初中数学冀教版七年级下册第十一章 因式分解综合与测试练习
展开
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试练习,共17页。试卷主要包含了下列因式分解正确的是.,下列各式因式分解正确的是等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、判断下列不能运用平方差公式因式分解的是( )A.﹣m2+4 B.﹣x2–y2C.x2y2﹣1 D.(m﹣a)2﹣(m+a)22、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )A.a(m+n)+b(m+n)=(a+b)(m+n)B.m(a+b)+n(a+b)=(a+b)(m+n)C.am+bm+an+bn=(a+b)(m+n)D.ab+mn+am+bn=(a+b)(m+n)3、下列从左到右的变形属于因式分解的是( )A.x2+2x+1=x(x+2)+1 B.﹣7ab2c3=﹣abc•7bc2C.m(m+3)=m2+3m D.2x2﹣5x=x(2x﹣5)4、下列因式分解正确的是( ).A. B.C. D.5、下列从左边到右边的变形,属于因式分解的是( )A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣16、下列各式中从左到右的变形,是因式分解的是( )A. B.C. D.7、下列各式中能用平方差公式计算的是( )A.(x+y)(y﹣x) B.(x+y)(y+x)C.(x+y)(﹣y﹣x) D.(x﹣y)(y﹣x)8、下列等式中,从左到右是因式分解的是( )A. B.C. D.9、下列各式因式分解正确的是( )A. B.C. D.10、下列各式中,正确的因式分解是( )A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把多项式分解因式结果是______.2、把多项式-27分解因式的结果是________.3、分解因式:________.(直接写出结果)4、分解因式:______.5、分解因式:______.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1)(2)(3)2、因式分解:9﹣x2+2xy﹣y2.3、分解因式(1) (2)4、计算:(1)计算:(2a)3•b4÷4a3b2;(2)计算:(a﹣2b+1)2;(3)分解因式:(a﹣2b)2﹣(3a﹣2b)2.5、(1)计算:x(x2y2﹣xy)÷x2y;(2)分解因式:3bx2+6bxy+3by2. -参考答案-一、单选题1、B【解析】【分析】根据平方差公式:进行逐一求解判断即可.【详解】解:A、,能用平方差公式分解因式,不符合题意;B、,不能用平方差公式分解因式,符合题意;C、,能用平方差公式分解因式,不符合题意;D、能用平方差公式分解因式,不符合题意;故选B.【点睛】本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.2、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.3、D【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.由定义判断即可.【详解】解:A.x2+2x+1=(x+1)2,故A不符合题意;B.-7ab2c3是单项式,不存在因式分解,故B不符合题意;C.m(m+3)=m2+3m是单项式乘多项式,故C不符合题意;D.2x2-5x=x(2x-5)是因式分解,故D符合题意;故选:D.【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义,能够根据所给形式判断是否符合因式分解的变形是解题的关键.4、C【解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解.【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选:C.【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底.5、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.6、B【解析】【分析】因式分解的结果是几个整式的积的形式.【详解】解:A.从左到右的变形是整式乘法,不是因式分解,故本选项不符合题意;B.从左到右的变形是因式分解,故本选项符合题意;C. ,故本选项不符合题意;D.,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、A【解析】【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【详解】解:A、(x+y)(y﹣x)=不符合平方差公式的特点,故本选项符合题意;B、(x+y)(y+x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不合题意;C、(x+y)(﹣y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;D、(x﹣y)(y﹣x)不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;故选A.【点睛】本题考查的是应用平方差公式进行计算的能力,掌握平方差公式的结构特征是正确解题的关键.8、B【解析】【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.9、B【解析】【分析】根据因式分解的定义(把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解)及完全平方公式依次进行判断即可得.【详解】解:A、不能进行因式分解,错误;B、选项正确,是因式分解;C、选项是整式的乘法,不是因式分解,不符合题意;D、,选项因式分解错误;故选:B.【点睛】题目主要考查因式分解的定义及方法,深刻理解因式分解的定义是解题关键.10、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.二、填空题1、【解析】【分析】利用平方差公式分解得到结果,即可做出判断.【详解】解:== 故答案为:【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.2、3(m+3)(m-3)【解析】【分析】先提取公因数3,后利用平方差公式分解即可.【详解】∵-27=3()=3()=3(m+3)(m-3),故答案为:3(m+3)(m-3).【点睛】本题考查了因式分解,熟练掌握先提取公因式,后用公式法分解的基本思路是解题的关键.3、2(x-a)(4a-2b-3c)【解析】【分析】提出公因式2(x-a)即可求得结果【详解】解:2(x-a)(4a-2b-3c)故答案为:2(x-a)(4a-2b-3c)【点睛】本题考查了提公因式法因式分解,正确的找到公因式是解题的关键.4、【解析】【分析】首先提公因式3x,然后利用完全平方公式因式分解即可分解.【详解】解:.故答案为:.【点睛】本题考查了提公因式法与公式法分解因式,掌握因式分解的方法与步骤,熟记公式是解题关键.5、【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】故答案为:.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.三、解答题1、 (1)2a(a2+3b);(2)5(x+y)(x﹣y);(3)﹣3(x﹣y)2.【解析】【分析】(1)直接提公因式2a即可;(2)先提公因式,再利用平方差公式即可;(3)先提公因式,再利用完全平方公式即可.(1)解:=2a(a2+3b);(2)解:(2)原式=5(x2﹣y2)=5(x+y)(x﹣y);(3)解:(3)原式=﹣3(x2﹣2xy+y2)=﹣3(x﹣y)2.【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是正确应用的前提.2、(3+x﹣y)(3﹣x+y)【解析】【分析】首先把多项式分为9和-(x2-2xy+y2),后一组利用完全平方公式分解因式,接着利用平方差公式即可分解因式.【详解】解:9-x2+2xy-y2=32-(x2-2xy+y2)=32-(x-y)2=(3+x-y)(3-x+y).【点睛】本题主要考查了利用分组分解法分解因式,解题的关键是把多项式分为9和-(x2-2xy+y2),然后利用公式法分解因式即可解决问题.3、(1);(2).【解析】【分析】(1)先提公因式,然后利用平方差公式因式分解即可;(2)利用提公因式法分解因式即可.【详解】(1)解:原式;(2)解:原式.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4、(1)2b2;(2)a2﹣4ab+4b2+2a﹣4b+1;(3)﹣8a(a﹣b).【解析】【分析】(1)先计算乘方,再计算除法可得;(2)利用完全平方公式计算可得;(3)先提公因式,再利用平方差分解可得.【详解】(1)原式=8a3•b4÷4a3b2=8a3b4÷4a3b2=2b2;(2)原式=[(a﹣2b)+1]2=(a﹣2b)2+2(a﹣2b)+12=a2﹣4ab+4b2+2a﹣4b+1;(3)原式=[(a﹣2b)+(3a﹣2b)]•[(a﹣2b)﹣(3a﹣2b)]=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).【点睛】本题主要考查整式的混合运算、完全平方公式和因式分解的能力,掌握基本运算是解题的关键.5、(1)xy-1;(2)3b(x+y)2.【解析】【分析】(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;(2)先提取公因式3b,再利用完全平方公式继续分解即可.【详解】解:(1)x(x2y2﹣xy)÷x2y=(x3y2-x2y)÷x2y=x3y2÷x2y -x2y÷x2y=xy-1;(2)3bx2+6bxy+3by2=3b(x2+2xy+y2)=3b(x+y)2.【点睛】本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
相关试卷
这是一份2020-2021学年第十一章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
这是一份数学第十一章 因式分解综合与测试同步练习题,共15页。试卷主要包含了如果x2+kx﹣10=,已知a2,若a等内容,欢迎下载使用。
这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共18页。试卷主要包含了若a,下列因式分解正确的是等内容,欢迎下载使用。