![2021-2022学年度冀教版八年级数学下册第十八章数据的收集与整理单元测试试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12719821/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第十八章数据的收集与整理单元测试试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12719821/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度冀教版八年级数学下册第十八章数据的收集与整理单元测试试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12719821/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中冀教版第十八章 数据的收集与整理综合与测试单元测试随堂练习题
展开
这是一份初中冀教版第十八章 数据的收集与整理综合与测试单元测试随堂练习题,共20页。试卷主要包含了某校九年级,下列调查中适合普查的是等内容,欢迎下载使用。
八年级数学下册第十八章数据的收集与整理单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某电器商城统计了近五年销售的某种品牌的电冰箱销量,为了清楚地反应该品牌销量的增减变化情况,应选择使用的统计图是( )A.条形统计图 B.扇形统计图C.折线统计图 D.以上都可以2、下列调查方式中,适合用普查方式的是( )A.对某市学生课外作业时间的调查 B.对神州十三号载人航天飞船的零部件进行调查C.对某工厂生产的灯泡寿命的调查 D.对某市空气质量的调查3、能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制( )A.条形统计图 B.扇形统计图 C.折线统计图 D.直方图4、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是( )A.这600名学生的“中华经典诵读”大赛成绩的全体是总体B.50名学生是总体的一个样本C.每个学生是个体D.样本容量是50名5、为了了解某乡今年果农的年收入分布情况.从全乡果农中抽取50户果农的年收入进行统计分析.在这个问题中.样本是指( )A.50 B.被抽取的50户果农 C.被抽取的50户果农的年收入 D.某乡2020年果农的年收入6、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A.0.25 B.0.3 C.2 D.307、我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有( )A.0种 B.1种 C.2种 D.3种8、下列调查中适合普查的是( )A.为保证某种新研发的战斗机试飞成功,对其零部件进行检查B.调查一批英雄牌钢笔的使用寿命C.研究父母与孩子交流的时间量与孩子的性格之间是否有联系D.要考察人们对保护海洋的意识9、紧跟2006年第十八届世界杯足球赛的步伐,师大学生也举行了足球比赛,下表是师范大学四个系举行足球单循环赛的成绩:球队成绩球队数学中文教育化学数学×0:1②3:20:0中文1:0①×1:13:0教育2:31:1×4:1化学0:00:31:4×表中成绩栏中的比为行中所有球队比赛的进球之比.如①表示中文系与数学系的比赛中,中文系以1:0获胜;②表示与①同一场比赛,数学系输给了中文系.按规定,胜一场得3分,平一场得1分,负一场得0分,按得分由多到少排名次,则此次比赛的冠军队是( ).A.数学系 B.中文系 C.教育系 D.化学系10、下列说法中正确的是( )A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本C.为了了解全市中学生的睡眠情况,应该采用普查的方式D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为保证中小学生每天锻炼一小时,某校开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了如图的统计图(1)和图(2),则扇形统计图(2)中表示“足球”项目扇形的圆心角的度数为__.2、学校的全体学生的爱好情况是我们要考察的_______,称为总体;每个学生的爱好情况称为_______;所抽取的学生的爱好情况称为_______.3、为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计, 绘制了一个不完整的扇形统计图,根据图中提供的信息,阅读3小时对应扇形图的圆心角的大小为_________度.4、为了了解学生对《未成年人保护法》的知晓情况.某学校随机选取了部分学生进行调查,并将调查结果绘制成如图所示的扇形图.若该学校共有学生1800人.则可以估计其中对《未成年人保护法》非常清楚的学生约有 __人.5、圆周率π≈3.141592653589793,数字5出现的频数是____.三、解答题(5小题,每小题10分,共计50分)1、某校对全校2600名学生进行“新冠防疫知识”的教育活动,从中抽取部分学生进行测试,成绩评定按从高分到低分排列分为A、B、C、D四个等级,绘制了图(1)、图(2)两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)求本次抽查的学生共有多少人?(2)将两幅统计图补充完整.(3)求扇形统计图中“B”等级所对应的扇形圆心角的度数.(4)估计全校得“D”等级的学生有多少人?2、4月23日是“世界读书日”,我校校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解学生周末两天的读书时间,校团委随机调查了部分学生的读书时间x(单位:分钟),把读书时间分为四组:A(30≤x<60),B.(60≤x<90),C.(90≤x<120),D(120≤x<150).部分数据信息如下:a.B组和C组的所有数据:85 90 60 70 110 75 65 78 100 90 80 95 90b.根据调查结果绘制了如下尚不完整的统计图:请根据以上信息,回答下列问题:(1)被调查的学生共有多少人,并补全频数分布直方图;(2)在扇形统计图中,C组所对应的扇形圆心角是_____;(3)请结合统计图给全校学生发出一条合理化的倡议.3、统计资料表明,大多数汽车发生交通事故时其速度为中等,极少的事故发生于车速大于的情况.因此,小华认为高速行驶比较安全,你认为小华的结论正确吗?为什么?4、如图所示是一位病人的体温记录折线图.看图回答下列问题:(1)护士每隔几小时给病人量一次体温?(2)这位病人的体温最高是多少?最低是多少?(3)他在4月10日18时的体温是多少?(4)他的体温在哪段时间下降最快﹖哪些时间最为稳定?(5)从体温看,这位病人的病情是在恶化还是在好转?5、为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:1.6 3.5 2.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.31.5 3.1 5.6 3.7 2.2 3.3 5.8 4.3 3.6 3.8 3.05.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.14.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.1 5.0 4.93.0 3.1 7.2 1.8 5.0 1.9将数据适当分组,并绘制相应的频数直方图. -参考答案-一、单选题1、C【解析】【分析】由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目,据此可得答案.【详解】解:∵为了清楚地反应该品牌销量的增减变化情况,∴结合统计图各自的特点,应选择折线统计图.故选:C.【点睛】本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.2、B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.对某市学生课外作业时间的调查工作量比较大,宜采用抽样调查;B.对神州十三号载人航天飞船的零部件进行调查非常重要,宜采用普查;C.对某工厂生产的灯泡寿命的调查具有破坏性,宜采用抽样调查;D.对某市空气质量的调查工作量非常大,宜采用抽样调查;故选B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3、C【解析】【分析】根据统计图的特点解答.【详解】解:能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制折线统计图,故选:C.【点睛】此题考查了统计图的特点,条形统计图能够直观地反映各变量数量的差异,折线图能直观反映各变量的变化趋势,扇形统计图能清楚地表示各部分在总体中所占的百分比,直方图体现个体的数量,熟记每种统计图的特点是解题的关键.4、A【解析】【分析】根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.【详解】解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;C、每个学生的成绩是个体,故本选项错误,不符合题意;D、样本容量是50,故本选项错误,不符合题意;故选A.【点睛】本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.5、C【解析】【分析】研究某个问题时,从对象的所有观测结果中抽取一部分样品,这部分样品叫做所有观测结果的样本.【详解】解:在这个问题中,样本是指被抽取的50户果农的年收入故选:C.【点睛】本题考查样本的概念,是基础考点,掌握相关知识是解题关键.6、B【解析】【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),选择“5G时代”的人数为:30人,∴选择“5G时代”的频率是:=0.3;故选:B.【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.7、B【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.【详解】解:1000名考生的成绩是总体的一个样本;故①不符合题意;55000名考生的成绩是总体;故②不符合题意;样本容量是1000,描述正确,故③符合题意;故选B【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A.为保证某种新研发的战斗机试飞成功,对其零部件进行检查非常重要,宜采用普查,故符合题意;B.调查一批英雄牌钢笔的使用寿命具有破坏性,宜采用抽样调查,故不符合题意;C.研究父母与孩子交流的时间量与孩子的性格之间是否有联系的工作量非常大,宜采用抽样调查,故不符合题意;D.要考察人们对保护海洋的意识的工作量非常大,宜采用抽样调查,故不符合题意;故选A.【点睛】本题考查了抽样调查和全面调查的定义,为了特定的目的对全部考查对象进行的全面调查叫做普查;从全部考查对象中抽取部分个体,通过对这一部分个体的调查估计考查对象的总体情况,这种调查叫做抽样调查.9、B【解析】【分析】分别求出中文系,数学系,化学系,教育系的得分,就可以解决.【详解】解:∵一共有四只球队参加比赛∴每支球队只参加3场比赛分别求出4支队伍的得分:中文:3+1+3=7,数学:0+3+1=4,教育:0+1+3=4,化学:1+0+0=1,∴中文是冠军,故选B.【点睛】此题主要考查了利用表格获取正确的信息,以及解决实际生活问题,题目比较新颖.10、D【解析】【分析】根据全面调查、抽样调查、样本和样本容量判断即可.【详解】A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;C、∵全市中学生人数太多,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,故D正确;故选:D【点睛】本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.二、填空题1、72°【解析】【分析】先算出总人数,再用足球人数占总人数的百分比乘即可得.【详解】解:总人数是:20÷40%=50(人),∵足球的人数为10人,∴“足球”项目扇形的圆心角的度数为:360°×=72°;故答案为:72°.【点睛】本题考查了扇形统计图,解题的关键的是求出总人数.2、 全体对象 个体 样本【解析】略3、144【解析】【分析】首先计算出阅读3小时所占圆心角的度数,再乘以360°即可得出结论.【详解】解:阅读3小时所占圆心角的度数为1-16%-10%-10%-24%=40%,360°×40%=144°,故答案为:144.【点睛】本题考查了扇形统计图,正确的识别图形是解题的关键.4、540【解析】【分析】先求出非常清楚所占的百分比,再乘以该校的总人数,即可得出答案.【详解】解:根据题意得:(人.答:可以估计其中对《未成年人保护法》非常清楚的学生约有540人.故答案为:540.【点睛】此题考查了用样本估计总体,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.5、3【解析】【分析】从数5出现的次数即可得出答案.【详解】在中,5出现了3次,∴数字5出现的频数是3.故答案为:3.【点睛】本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键.三、解答题1、(1)120人;(2)见解析;(3)144°;(4)260人【解析】【分析】(1)由A等级人数及其所占百分比可得总人数;(2)总人数乘以C等级百分比求出其人数,再根据四个等级人数之和等于总人数求出D等级人数,继而分别用B、D等级人数除以总人数求出其所占百分比即可补全图形;(3)用360°乘以样本中B对应的百分比即可;(4)用总人数乘以样本中D等级人数所占百分比即可.【详解】解:(1)本次抽查的学生人数为24÷20%=120(人);(2)C等级人数为120×30%=36(人),D等级人数为120﹣(24+48+36)=12(人),B等级人数所占百分比为48÷120×100%=40%,D等级人数所占百分比为12÷120×100%=10%,补全图形如下:(3)扇形统计图中“B”等级所对应的扇形圆心角的度数为360°×40%=144°;(4)估计全校得“D”等级的学生有2600×10%=260(人).【点睛】此题主要考查统计调查的应用没解题的关键是熟知条形统计图与扇形统计图的特点.2、 (1)20,作图见解析(2)108°(3)书是人类进步的阶梯,同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【解析】【分析】(1)由扇形统计图中A所占扇形比例为20%和频数分布直方图中A组频数为4,即可得总人数为4÷20%=20人,再由题干可求得B组人数为7人,D组人数为3人,补全频数分布直方图即可.(2)由(1)知频数分布直方图中C组频数为6,故C组所对应扇形圆心角为(3)与统计图的数据相关即可,答案不唯一(1)总人数为4÷20%=20人B组人数为13-6=7人D组人数为20-4-6-7=3人补全频数分布直方图如图所示(2)故C组所对应的扇形圆心角是108°.(3)书是人类进步的阶梯、同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)【点睛】本题考查了数据的调查及整理.频数分布直方图是用小长方形的面积来反映数据落在各个小组内的频数的大小的统计图.扇形统计图,特点:扇形统计图能清楚地表示出各部分在总体中所占的百分比,缺点:在两个扇形统计图中,若一个统计图中的某一个量所占的百分比比另一个统计图中的某一个量所占的百分比多,容易造成第一个统计量大于第二个统计量的错觉.注意:扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.3、不正确,理由见解析【解析】【分析】根据统计关系不能表明因果关系进行分析即可.【详解】解:小华的结论不正确,因为统计关系不能表明因果关系,由于多数人是以中等速度开车,所以多数事故发生在中等速度行驶的情况下.【点睛】本题考查的是调查的可靠性问题,掌握样本的确定及抽取的不同是解题的关键.4、(1)6小时;(2)最高体温是39摄氏度,最低体温是36摄氏度;(3)37摄氏度;(4)4月9日的6时--12时体温下降最快,4月11日12时-18时最为稳定;(5)好转.【解析】【分析】(1)由折线统计图可以看出:护士每隔12-6=6小时给病人量一次体温;(2)折线图中最高的点表示温度最高,最低的点表示温度最低,由此即可求出答案;(3)从折线统计图可以看出:他在4月10日18时的体温是37摄氏度;(4)从折线统计图可以看出:4月10日的18时-4月11日0时体温下降最快,4月11日12时-18时最为稳定;(5)曲线呈现下降的趋势,这个病人的病情好转了.【详解】解:(1)由折线统计图可以看出:护士每隔12-6=6小时给病人量一次体温;(2)这个病人的最高体温是39摄氏度,最低体温是36摄氏度;(3)他在4月10日18时的体温是37摄氏度;(4)他的体温在4月9日的6时--12时体温下降最快,4月11日12时-18时最为稳定;(5)从体温看,这位病人的病情是在好转.【点睛】本题考查的是折线统计图的综合运用;读懂统计图,从统计图中得到必要的信息是解决问题的关键;从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.5、见解析【解析】【分析】绘制频数分布直方图的一般步骤为:1、收集数据;2、整理数据;3、分析数据(决定组距、频数);4、绘制频数分布表;5、绘制频数分布直方图,在本题中,由于最大的数据为7.2,最小的数据为1.5,则极差为7.2-1.5=5.7,于是需将数据分为6组,接下来对数据进行分组,统计出每组数据的个数,按照绘制频数分布直方图的方法来作图即可.【详解】解:第一步,计算最大值与最小值的差:在所给的数据中,最大值是7.2,最小值是1.5,它们的差是7.2-1.5=5.7,第二步,决定组距与组数:由于最大值与最小值的差是5.7,如果取组距为1,那么由于,可分成6组,组数合适,于是取组距为1,组数为6,第三步,列频数分布表:分组频数1010111054合计50 第四步,画频数直方图:【点睛】本题考查了绘制频数分布直方图的方法,属于基础题,熟练掌握绘制频数分布直方图的一般步骤是解题关键.
相关试卷
这是一份数学冀教版第十八章 数据的收集与整理综合与测试当堂达标检测题,共20页。试卷主要包含了下列适合于抽样调查的是等内容,欢迎下载使用。
这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试单元测试当堂达标检测题,共18页。试卷主要包含了下列适合于抽样调查的是,下列问题中,适合抽样调查的是,下列做法正确的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
这是一份初中冀教版第十八章 数据的收集与整理综合与测试同步达标检测题,共19页。试卷主要包含了下列调查中,最适合采用全面调查,某校九年级等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)