初中数学冀教版七年级下册第十一章 因式分解综合与测试课时作业
展开冀教版七年级数学下册第十一章 因式分解定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、因式分解a2b﹣2ab+b正确的是( )
A.b(a2﹣2a) B.ab(a﹣2) C.b(a2﹣2a+1) D.b(a﹣1)2
2、下列各式从左到右的变形中,属于因式分解的是( )
A. B.
C. D.
3、下列分解因式正确的是( )
A. B.
C. D.
4、把分解因式的结果是( ).
A. B.
C. D.
5、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+1
6、下列各式从左至右是因式分解的是( )
A. B.
C. D.
7、因式分解x2y﹣9y的正确结果是( )
A.y(x+3)(x﹣3) B.y(x+9)(x﹣9) C.y(x2﹣9) D.y(x﹣3)2
8、已知x2+x﹣6=(x+a)(x+b),则( )
A.ab=6 B.ab=﹣6 C.a+b=6 D.a+b=﹣6
9、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )
A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1
C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c
10、下列多项式不能用公式法因式分解的是( )
A.a2+4a+4 B.a2﹣a+1 C.﹣a2﹣9 D.a2﹣1
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:5a2﹣45b2=_____.
2、已知:x+y=0.34,x+3y=0.86,则x2+4xy+4y2=_____.
3、因式分解:4x2y2﹣2x3y=______.
4、单项式4m2n2与12m3n2的公因式是________.
5、分解因式:________.
三、解答题(5小题,每小题10分,共计50分)
1、阅读下列材料:根据多项式的乘法,我们知道,.反过来,就得到的因式分解形式,即.把这个多项式的二次项系数1分解为,常数项10分解为,先将分解的二次项系数1,1分别写在十字交叉线的左上角和左下角;再把,分别写在十字交叉线的右上角和右下角,我们发现,把它们交叉相乘,再求代数和,此时正好等于一次项系数(如图1).
像上面这样,先分解二次项系数,把它们分别写在十字交叉线的左上角和左下角;再分解常数项,把它们分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其正好等于一次项系数,我们把这种借助“十字”方式,将一个二次三项式分解因式的方法,叫做十字相乘法.
例如,将二次三项式分解因式,它的“十字”如图2:
所以,.
请你用十字相乘法将下列多项式分解因式:
(1) ;
(2) ;
(3) .
2、因式分解:
(1)4x4+4x3+x2;
(2)(2m+3)2﹣m2.
3、将下列各式分解因式:
(1); (2)
4、因式分解
(1)n2(m﹣2)﹣n(2﹣m)
(2)(a2+4)2﹣16a2.
5、在学习自然数时,我们发现一种特殊的自然数—“三顺数”.
定义1:对于四位自然数n,若千位数字为6,各个数位数字均不为0,能被6整除,且数n的各个数位数字之和也恰好能被6整除,则称这个自然数n为“三顺数”.
例如:6336是“三顺数”,因为6336÷6=1056,且(6+3+3+6)÷6=3;6216不是“三顺数”,因为6216÷6=1036,但6+2+1+6=15不能被6整除.
定义2:将任意一个“三顺数”n的前两位数字与后两位数字交换,交换后得到一个新的四位数n′,规定:T(n)=.
(1)判断6426,6726是否为“三顺数”,并说明理由;
(2)若n是一个“三顺数”,它的百位数字比十位数字的2倍小2,求T(n)的最大值.
-参考答案-
一、单选题
1、D
【解析】
【分析】
先提取公因式,再用完全平方公式分解因式即可.
【详解】
解:a2b﹣2ab+b
=b(a2﹣2a+1)
=b(a﹣1)2.
故选:D.
【点睛】
本题考查的是因式分解,掌握“提公因式与公式法分解因式”是解本题的关键. 注意分解因式要彻底.
2、B
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:、是单项式的乘法,不是因式分解,故本选项不符合题意;
、是因式分解,利用了完全平方差公式进行了因式分解,故本选项符合题意;
、是整式的乘法,不是因式分解,故本选项不符合题意;
、因式分解错误,故本选项不符合题意;
故选:B.
【点睛】
本题考查了因式分解的定义,解题的关键是能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
3、C
【解析】
【分析】
根据因式分解的方法逐个判断即可.
【详解】
解:A. ,原选项错误,不符合题意;
B. ,原选项错误,不符合题意;
C. ,正确,符合题意;
D. ,原选项错误,不符合题意;
故选:C.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解.
4、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
5、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
6、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;
B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
C、,是整式的乘法,不是因式分解,故本选项不符合题意;
D、,是整式的乘法,不是因式分解,故本选项不符合题意.
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
7、A
【解析】
【分析】
先提公因式,再根据平方差公式因式分解即可.
【详解】
解:x2y﹣9y
故选A
【点睛】
本题考查了综合提公因式法和公式法分解因式,掌握因式分解的方法是解题的关键.
8、B
【解析】
【分析】
先利用十字相乘法去掉括号,再根据等式的性质得a+b=1,ab=﹣6.
【详解】
解:∵x2+x﹣6=(x+a)(x+b),
∴x2+x﹣6=x2+(a+b)x+ab,
∴a+b=1,ab=﹣6;
故选:B.
【点睛】
本题考查了十字相乘法分解因式,掌握运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,这是解题关键.
9、A
【解析】
【分析】
将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.
【详解】
解:,
,
,
∴或,
即:或,
A选项中,若,则正确;
其他三个选项均不能得出,
故选:A.
【点睛】
题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.
10、C
【解析】
【分析】
直接利用完全平方公式以及平方差公式分别分解因式,进而得出答案.
【详解】
解:A中,故此选项不合题意;
B中,故此选项不合题意;
C中无法分解因式,故此选项符合题意;
D中,故此选项不合题意;
故选:C.
【点睛】
本题考查了利用乘法公式进行因式分解.解题的关键在于对完全平方公式和平方差公式的灵活运用.
二、填空题
1、
【解析】
【分析】
原式提取公因式5,再利用平方差公式分解即可.
【详解】
解:原式=5(a2﹣9b2)
=5(a+3b)(a﹣3b).
故答案为:5(a+3b)(a﹣3b).
【点睛】
此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键.
2、0.36##925
【解析】
【分析】
x+y=0.34①,x+3y=0.86②,由①+②x+2y=4,把所求代数式根据完全平方公式因式分解,再代入计算即可.
【详解】
解:x+y=0.34①,x+3y=0.86②,
由①+②可得2x+4y=1.2,
即x+2y=0.6,
∴x2+4xy+4y2=(x+2y)2=0.62=0.36.
故答案为:0.36.
【点睛】
本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.
3、2x2y(2y-x)
【解析】
【分析】
直接提取公因式2x2y,进而分解因式即可.
【详解】
解:4x2y2-2x3y=2x2y(2y-x).
故答案为:2x2y(2y-x).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
4、4m2n2
【解析】
【分析】
找到系数的公共部分,再找到因式的公共部分即可.
【详解】
解:由于4和12的公因数是4,m2n2和m3n2的公共部分为m2n2,
所以4m2n2与12m3n2的公因式是4m2n2.
故答案为4m2n2.
【点睛】
本题主要考查公因式,熟练掌握如何去找公因式是解题的关键.
5、
【解析】
【分析】
直接根据提公因式法因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.
三、解答题
1、 (1)(x+2)(x+3)
(2)(2x-1)(x-3)
(3)(x+2)(x-m)
【解析】
【分析】
根据阅读材料中的十字相乘法即可得出答案.
(1)
解:
由上图可知:x2+5x+6=(x+2)(x+3),
故答案为:(x+2)(x+3);
(2)
解:
由上图可知:2x2-7x+3=(2x-1)(x-3),
故答案为:(2x-1)(x-3);
(3)
解:
由上图可知:x2+(2-m)x-2m=(x+2)(x-m),
故答案为:(x+2)(x-m).
【点睛】
本题考查了十字相乘法因式分解,关键是读懂材料掌握十字相乘的基本步骤.
2、 (1)
(2)
【解析】
【分析】
(1)先提取公因式,然后再运用完全平方公式法因式分解即可;
(2)运用平方差公式因式分解即可.
(1)
解:4x4+4x3+x2
= x2(4x2+4x+1)
=.
(2)
解:(2m+3)2﹣m2
=(2m+3+m)(2m+3-m)
=(3m+3)(m+3)
=.
【点睛】
本题主要考查了因式分解,掌握提取公因式法和公式法因式分解是解答本题的关键.
3、(1);(2)
【解析】
【分析】
(1)首先提取公因式-6,再利用完全平方公式继续分解即可;
(2)首先提取公因式3ab,再利用平方差进行分解即可.
【详解】
解:(1)
=
=;
(2)
=
=.
【点睛】
本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.
4、(1)n(m﹣2)(n+1);(2)(a+2)2(a﹣2)2.
【解析】
【分析】
(1)提取公因式,进行因式分解即可;
(2)根据平方差公式以及完全平方公式因式分解即可.
【详解】
(1)n2(m﹣2)﹣n(2﹣m)
=n2(m﹣2)+n(m﹣2)
=n(m﹣2)(n+1);
(2)(a2+4)2﹣16a2
=(a2+4)2﹣(4a)2
=(a2+4a+4)(a2﹣4a+4)
=(a+2)2(a﹣2)2
【点睛】
本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底.
5、 (1)6426是“三顺数”; 6726不是“三顺数”;理由见解析
(2)40
【解析】
【分析】
(1)根据“”三牛数的定义“求解.
(2)先表示n,n′和T(n),再求最值.
(1)
∵6426÷6=1071,且(6+4+2+6)÷6=3
∴6426是“三顺数”;
∵6726÷6=1121,且6+7+2+6=21不能被6整除
∴6726不是“三顺数”;
(2)
设n=,即这个四位数的百位,十位,个位数字分别为a,b,c.
∴n′=.
∴n=×100+,n′=×100+.
∴
=-.
当-最大时,T(n)最大,此时应该使b尽可能小.
①当b=1时,a=2b-2=0,不合题意;
②b=2时,a=2b-2=2,此时,.
6+2+2+c=10+c能被6整除,取c=2,n=6222.
6222÷6=1037.
∴T(n)的最大值=62-22=40.
【点睛】
本题考查用新定义解题,根据新定义,表示n,n′和T(n)是求解本题的关键.
2020-2021学年第十一章 因式分解综合与测试达标测试: 这是一份2020-2021学年第十一章 因式分解综合与测试达标测试,共18页。试卷主要包含了把多项式分解因式,其结果是,把分解因式的结果是.,分解因式2a2等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试课时练习: 这是一份冀教版七年级下册第十一章 因式分解综合与测试课时练习,共18页。试卷主要包含了已知c<a<b<0,若M=|a,已知,,那么的值为,如果x2+kx﹣10=,把多项式分解因式,其结果是等内容,欢迎下载使用。
冀教版七年级下册第十一章 因式分解综合与测试课时作业: 这是一份冀教版七年级下册第十一章 因式分解综合与测试课时作业,共18页。试卷主要包含了下列多项式不能因式分解的是,下列因式分解中,正确的是等内容,欢迎下载使用。