数学七年级下册第十一章 因式分解综合与测试练习
展开
这是一份数学七年级下册第十一章 因式分解综合与测试练习,共17页。试卷主要包含了已知,,那么的值为,下列因式分解正确的是,如图,长与宽分别为a等内容,欢迎下载使用。
冀教版七年级数学下册第十一章 因式分解专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列因式分解正确的是( )A.a2+1=a(a+1) B.C.a2+a﹣5=(a﹣2)(a+3)+1 D.2、把多项式a2﹣9a分解因式,结果正确的是( )A.a(a+3)(a﹣3) B.a(a﹣9)C.(a﹣3)2 D.(a+3)(a﹣3)3、把多项式因式分解得,则常数,的值分别为( )A., B.,C., D.,4、对于一个图形,通过两种不同的方法计算它的面积,可以得到一个等式,例如图①可以得到用完全平方公式进行因式分解的等式a2+2ab+b2=(a+b)2,如图②是由4个长方形拼成的一个大的长方形,用不同的方式表示此长方形的面积,由此不能得到的因式分解的等式是( )A.a(m+n)+b(m+n)=(a+b)(m+n)B.m(a+b)+n(a+b)=(a+b)(m+n)C.am+bm+an+bn=(a+b)(m+n)D.ab+mn+am+bn=(a+b)(m+n)5、下列各式从左到右的变形中,是因式分解的为( )A.x(a﹣b)=ax﹣bx B.x2﹣3x+1=x(x﹣3)+1C.x2﹣4=(x+2)(x﹣2) D.m+1=x(1+)6、下列从左边到右边的变形,属于因式分解的是( )A.x2﹣x﹣6=(x+2)(x﹣3) B.x2﹣2x+1=x(x﹣2)+1C.x2+y2=(x+y)2 D.(x+1)(x﹣1)=x2﹣17、已知,,那么的值为( )A.3 B.5 C. D.8、下列因式分解正确的是( )A. B.C. D.9、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )A.2560 B.490 C.70 D.4910、对于有理数a,b,c,有(a+100)b=(a+100)c,下列说法正确的是( )A.若a≠﹣100,则b﹣c=0 B.若a≠﹣100,则bc=1C.若b≠c,则a+b≠c D.若a=﹣100,则ab=c第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、当x=___时,x2﹣2x+1取得最小值.2、分解因式:______.3、若a-b=2,a2-b2=6,则a2+b2=______.4、分解因式:4a3b2﹣6a2b2=_____.5、(________)(________);三、解答题(5小题,每小题10分,共计50分)1、(1)整式乘法:(2a2b)3; (2)分解因式:x3-2x2+x2、在因式分解的学习中我们知道对二次三项式可用十字相乘法方法得出,用上述方法将下列各式因式分解:(1)__________.(2)__________.(3)__________.(4)__________.3、分解因式:(1)(2)4、分解因式:5、将下列多项式分解因式:(1)(2) -参考答案-一、单选题1、D【解析】【分析】根据因式分解的定义严格判断即可.【详解】∵+1≠a(a+1)∴A分解不正确;∵,不是因式分解,∴B不符合题意;∵(a﹣2)(a+3)+1含有加法运算,∴C不符合题意;∵,∴D分解正确;故选D.【点睛】本题考查了因式分解,即把一个多项式写成几个因式的积,熟练进行因式分解是解题的关键.2、B【解析】【分析】用提公因式法,提取公因式即可求解.【详解】解:a2﹣9a=a(a﹣9).故选:B.【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.3、A【解析】【分析】根据因式分解是恒等式,展开比较系数即可.【详解】∵=,∴=,∴n-2=5,m=-2n,∴n=7,m=-14,故选A.【点睛】本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.4、D【解析】【分析】由面积的和差关系以及S长方形ABCD=(a+b)(m+n)求解即可【详解】解:如图②,S长方形ABCD=(a+b)(m+n),A.S长方形ABCD=S长方形ABFH+S长方形HFCD=a(m+n)+b(m+n)=(a+b)(m+n),不符合题意;B.S长方形ABCD=S长方形AEGD+S长方形BCGE=m(a+b)+n(a+b)=(a+b)(m+n),不符合题意;C.S长方形ABCD=S长方形AEQH+S长方形HQGD+S长方形EBFQ+S长方形QFCG=am+bm+an+bn=(a+b)(m+n),不符合题意;D.不能得到ab+mn+am+bn=(a+b)(m+n),故D符合题意;故选:D.【点睛】本题考查了因式分解,整式乘法与图形的面积,数形结合是解题的关键.5、C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A错误,不符合题意;B、没把一个多项式转化成几个整式积的形式,故B错误,不符合题意;C、把一个多项式转化成几个整式积的形式,故C正确,符合题意;D、等号左右两边式子不相等,故D错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.6、A【解析】【分析】把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,根据概念逐一判断即可.【详解】解:x2﹣x﹣6=(x+2)(x﹣3)属于因式分解,故A符合题意;x2﹣2x+1=x(x﹣2)+1,右边没有化为整式的积的形式,不是因式分解,故B不符合题意;x2+y2=(x+y)2的左右两边不相等,不能分解因式,不是因式分解,故C不符合题意;(x+1)(x﹣1)=x2﹣1是整式的乘法运算,不是因式分解,故D不符合题意;故选A【点睛】本题考查的是因式分解的概念,掌握“利用因式分解的概念判断代数变形是否是因式分解”是解题的关键.7、D【解析】【分析】将多项式进行因式分解,再整体代入求解即可.【详解】解:,将,,代入可得:,故选:D.【点睛】本题考查因式分解,整体代入思想,能够熟练地将整式因式分解是解决此类题型的关键.8、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9、B【解析】【分析】利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.【详解】解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,∴ab=10,a+b=7,∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.故选:B.【点睛】本题主要考查了因式分解和代数式求值,准确计算是解题的关键.10、A【解析】【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得.【详解】解:,,,∴或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A.【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键.二、填空题1、1【解析】【分析】先根据完全平方公式配方,再根据偶次方的非负性即可求解.【详解】解:∵,∴当x=1时,x2﹣2x+1取得最小值.故答案为:1.【点睛】本题考查了完全平方公式,解题的关键是掌握完全平方公式.2、【解析】【分析】首先提取公因式,再根据平方差公式计算,即可得到答案.【详解】故答案为:.【点睛】本题考查了因式分解的知识;解题的关键是熟练掌握平方差公式的性质,从而完成求解.3、##6.5【解析】【分析】根据平方差公式求出a+b=3,解方程组,求出解代入计算即可.【详解】解:∵a-b=2,a2-b2=6,a2-b2=(a+b)(a-b)∴a+b=3,解方程组,得,∴a2+b2=,故答案为:.【点睛】此题考查了平方差公式的应用,解二元一次方程组,已知字母的值求代数式的值,正确掌握平方差公式是解题的关键.4、2a2b2(2a﹣3)【解析】【分析】直接找出公因式进而提取分解因式即可.【详解】4a3b2﹣6a2b2=2a2b2(2a﹣3).故答案为:2a2b2(2a﹣3).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.5、;;;;;【解析】【分析】利用十字相乘法进行因式分解即可得.【详解】解:;;;;;;故答案为:;;;;;.【点睛】本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键.二次三项式,若存在 ,则.三、解答题1、(1)8a6b3;(2)x(x-1)2【解析】【分析】(1)根据整式的运算法则即可求出答案;(2)先提公因式,再利用完全平方公式分解因式即可.【详解】解:(1)原式=;(2)原式=.【点睛】本题考查了整式的混合运算及因式分解,解题的关键是熟练运用整式的运算法则及完全平方公式分解因式,本题属于基础题型.2、 (1)(x-y)(x+6y)(2)(x-3a)(x-a-2)(3)(x+a-3b)(x-a-2b)(4)(20182x2+1)(x-1)【解析】【分析】(1)将-6y2改写成-y·6,然后根据例题分解即可;(2)将3a2+6a改写成,然后根据例题分解即可;(3)先化简,将改写,然后根据例题分解即可;(4)将改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式==(x-y)(x+6y);(2)解:原式==(x-3a)(x-a-2);(3)解:原式====(x+a-3b)(x-a-2b);(4)解:原式====(20182x+1)(x-1) .【点睛】本题考查了十字相乘法因式分解,熟练掌握二次三项式可用十字相乘法方法得出是解答本题的关键.3、 (1)(2)【解析】【分析】(1)先提取公因式,再利用平方差公式因式分解;(2)先利用平方差公式因式分解,再提取公因式因式分解.(1)解:;(2)解:.【点睛】本题考查了因式分解,解题的关键是掌握提取公因式及平方差公式.4、(a-3)2(a+3)2【解析】【分析】直接利用完全平方公式以及平方差公式分解因式得出答案.【详解】解:a4-18a2+81=(a2-9)2=(a-3)2(a+3)2.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.5、(1)-5x(x-5);(2)xy(2x-y)2【解析】【分析】(1)提取公因式即可因式分解;(2)先提取公因式,进而根据完全平方公式进行因式分解即可【详解】解:(1)(2)【点睛】本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键.
相关试卷
这是一份数学七年级下册第十一章 因式分解综合与测试复习练习题,共17页。试卷主要包含了下列分解因式正确的是,已知,,求代数式的值为,下列因式分解正确的是.等内容,欢迎下载使用。
这是一份冀教版七年级下册第十一章 因式分解综合与测试随堂练习题,共20页。试卷主要包含了把分解因式的结果是.,下列多项式不能因式分解的是等内容,欢迎下载使用。
这是一份2020-2021学年第十一章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。