2021学年第十一章 因式分解综合与测试同步测试题
展开冀教版七年级数学下册第十一章 因式分解定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、判断下列不能运用平方差公式因式分解的是( )
A.﹣m2+4 B.﹣x2–y2
C.x2y2﹣1 D.(m﹣a)2﹣(m+a)2
2、下列因式分解中,正确的是( )
A. B.
C. D.
3、若a2=b+2,b2=a+2,(a≠b)则a2﹣b2﹣2b+2的值为( )
A.﹣1 B.0 C.1 D.3
4、已知关于x的二次三项式分解因式的结果是,则代数式的值为( )
A.-3 B.-1 C.- D.
5、下列从左边到右边的变形中,是因式分解的是( )
A. B.
C. D.
6、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )
A.非负数 B.正数 C.负数 D.非正数
7、如图,长与宽分别为a、b的长方形,它的周长为14,面积为10,则a3b+2a2b2+ab3的值为( )
A.2560 B.490 C.70 D.49
8、把多项式因式分解得,则常数,的值分别为( )
A., B.,
C., D.,
9、多项式分解因式的结果是( )
A. B.
C. D.
10、下列等式从左到右的变形,属于因式分解的是( )
A. ﹣2x﹣1= B.(a+b)(a﹣b)=
C.﹣4x+4= D.﹣1=
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:________.
2、把多项式2a3﹣2a分解因式的结果是___.
3、把多项式-27分解因式的结果是________.
4、若a,b都是有理数,且满足a2+b2+5=4a﹣2b,则(a+b)2021=_____.
5、把多项式2m+4mx+2x分解因式的结果为____________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)
(2)
2、因式分解:9﹣x2+2xy﹣y2.
3、(Ⅰ)先化简,再求值:,其中,;
(Ⅱ)分解因式:① ;② .
4、已知,.求值:(1);(2).
5、因式分解:
(1);
(2).
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据平方差公式:进行逐一求解判断即可.
【详解】
解:A、,能用平方差公式分解因式,不符合题意;
B、,不能用平方差公式分解因式,符合题意;
C、,能用平方差公式分解因式,不符合题意;
D、能用平方差公式分解因式,不符合题意;
故选B.
【点睛】
本题主要考查了平方差公式分解因式,解题的关键在于能够熟练掌握平方差公式.
2、D
【解析】
【分析】
A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.
【详解】
解:A、原式,不符合题意;
B、原式,不符合题意;
C、原式不能分解,不符合题意;
D、原式,符合题意.
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
3、D
【解析】
【分析】
由a2=b+2,b2=a+2,且a≠b,可得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2,再代入计算即可求解.
【详解】
解:∵a2=b+2,b2=a+2,且a≠b,
∴a2−b2=b−a,
即(a+b)(a-b)=b-a,
∴a+b=−1,
∴a2-b2-2b+2
=(a+b)(a-b)−2b+2
=b−a-2b+2
=-(a+b)+2
=1+2
=3.
故选:D.
【点睛】
本题考查了代数式求值,解题的关键是求得a+b=−1,将a2-b2-2b+2变形为(a+b)(a-b)−2b+2是解题的关键.
4、C
【解析】
【分析】
根据因式分解与整式乘法的关系,可求得a与b的值,从而可求得结果的值.
【详解】
则,
∴
故选:C
【点睛】
本题考查了因式分解与整式乘法的关系,负整数指数幂的意义,掌握因式分解与整式乘法的关系是本题的关键.
5、A
【解析】
【分析】
根据因式分解的定义逐个判断即可.
【详解】
解:A.是因式分解,故本选项符合题意;
B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意;
C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;
D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.
6、A
【解析】
【分析】
先把原式化为,结合完全平方公式可得原式可化为从而可得答案.
【详解】
解:x2-4x+y2-6y+13
故选A
【点睛】
本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.
7、B
【解析】
【分析】
利用面积公式得到ab=10,由周长公式得到a+b=7,所以将原式因式分解得出ab(a+b)2.将其代入求值即可.
【详解】
解:∵长与宽分别为a、b的长方形,它的周长为14,面积为10,
∴ab=10,a+b=7,
∴a3b+2a2b2+ab3=ab(a+b)2=10×72=490.
故选:B.
【点睛】
本题主要考查了因式分解和代数式求值,准确计算是解题的关键.
8、A
【解析】
【分析】
根据因式分解是恒等式,展开比较系数即可.
【详解】
∵=,
∴=,
∴n-2=5,m=-2n,
∴n=7,m=-14,
故选A.
【点睛】
本题考查了因式分解,正确理解因式分解的恒等性是解题的关键.
9、B
【解析】
【分析】
先提取公因式a,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a+b)(a-b).
【详解】
解:ax2-ay2
=a(x2-y2)
=a(x+y)(x-y).
故选:B.
【点睛】
本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.
10、C
【解析】
【分析】
根据因式分解的定义和方法逐一判断即可.
【详解】
∵=﹣2x+1≠﹣2x﹣1,
∴A不是因式分解,不符合题意;
∵(a+b)(a﹣b)=不符合因式分解的定义,
∴B不是因式分解,不符合题意;
∵﹣4x+4=,符合因式分解的定义,
∴C是因式分解,符合题意;
∵﹣1≠,不符合因式分解的定义,
∴D不是因式分解,不符合题意;
故选C.
【点睛】
本题考查了因式分解的定义即把一个多项式分成几个因式的积的形式,熟练掌握因式分解的实质是恒等变形是解题的关键.
二、填空题
1、
【解析】
【分析】
直接根据提公因式法因式分解即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了提公因式法因式分解,准确找到公因式是解本题的关键.
2、
【解析】
【分析】
直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可.
【详解】
解:2a3﹣2a
=
=;
故答案为2a(a+1)(a-1)
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
3、3(m+3)(m-3)
【解析】
【分析】
先提取公因数3,后利用平方差公式分解即可.
【详解】
∵-27
=3()
=3()
=3(m+3)(m-3),
故答案为:3(m+3)(m-3).
【点睛】
本题考查了因式分解,熟练掌握先提取公因式,后用公式法分解的基本思路是解题的关键.
4、1
【解析】
【分析】
首先利用完全平方公式得出a,b的值,进而得出答案.
【详解】
解:∵a2+b2+5=4a﹣2b,
∴ ,
∴(a﹣2)2+(b+1)2=0,
∴a=2,b=﹣1,
∴(a+b)2021=(2﹣1)2021=1.
故答案为:1
【点睛】
本题主要考查了完全平方公式的应用,熟练掌握 ,是解题的关键.
5、
【解析】
【分析】
根据提公因式法因式分解,提公因式因式分解即可
【详解】
解:2m+4mx+2x
故答案为:
【点睛】
本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)先提取公因式 再利用平方差公式分解因式即可;
(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.
2、(3+x﹣y)(3﹣x+y)
【解析】
【分析】
首先把多项式分为9和-(x2-2xy+y2),后一组利用完全平方公式分解因式,接着利用平方差公式即可分解因式.
【详解】
解:9-x2+2xy-y2
=32-(x2-2xy+y2)
=32-(x-y)2
=(3+x-y)(3-x+y).
【点睛】
本题主要考查了利用分组分解法分解因式,解题的关键是把多项式分为9和-(x2-2xy+y2),然后利用公式法分解因式即可解决问题.
3、(Ⅰ),;(Ⅱ)①;②
【解析】
【分析】
(Ⅰ)括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果.
(Ⅱ)①先提公因式,再利用平方差公式进行分解.②先提公因式,再利用完全平方公式进行分解.
【详解】
解:(Ⅰ)原式
当、时
原式.
(Ⅱ)①
.
②
.
【点睛】
本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点.解题的关键与难点在于熟练掌握乘法公式,以及运算法则.
4、(1);(2)
【解析】
【分析】
(1)把两个等式相减,可得:再移项把等式的左边分解因式,结合 从而可得答案;
(2)由可得:由,可得再把分解因式即可得到答案.
【详解】
解:(1) ,,
则
(2)
,
【点睛】
本题考查的是因式分解的应用,求解代数式的值,掌握“利用提公因式,平方差公式分解因式及整体代入法求解代数式的值”是解题的关键.
5、 (1)
(2)
【解析】
【分析】
(1)先提出公因式,再利用平方差公式,即可求解;
(2)先提出公因式,再利用完全平方公式,即可求解.
(1)
解:原式
;
(2)
解:原式
.
【点睛】
本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并灵活选用合适的方法解答是解题的关键.
冀教版七年级下册第十一章 因式分解综合与测试达标测试: 这是一份冀教版七年级下册第十一章 因式分解综合与测试达标测试,共16页。试卷主要包含了已知,,那么的值为,当n为自然数时,等内容,欢迎下载使用。
初中冀教版第十一章 因式分解综合与测试随堂练习题: 这是一份初中冀教版第十一章 因式分解综合与测试随堂练习题,共18页。试卷主要包含了下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。
初中数学冀教版七年级下册第十一章 因式分解综合与测试同步练习题: 这是一份初中数学冀教版七年级下册第十一章 因式分解综合与测试同步练习题,共17页。试卷主要包含了下列因式分解正确的是,已知x,y满足,则的值为,下列多项式等内容,欢迎下载使用。