初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后练习题
展开八年级数学下册第十八章数据的收集与整理同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,最适合采用普查方式的是( )
A.调查某品牌电视的使用寿命 B.调查毕节市元旦当天进出主城区的车流量
C.调查我校七(1)班新冠核酸检查结果 D.调查某批次烟花爆竹的燃放效果
2、2021年我县有101万名初中毕业生参加升学考试,为了了解这101万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是( )
A.101万名考生 B.101万名考生的数学成绩
C.2000名考生 D.2000名考生的数学成绩
3、下列问题不适合用全面调查的是( )
A.旅客上飞机前的安检 B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间 D.调查市场上某种食品的色素含量是否符合国家标准
4、某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )
A.得分在70~80分的人数最多 B.组距为10
C.人数最少的得分段的频数为2 D.得分及格(≥60)的有12人
5、小明同学统计了某学校八年级部分同学每天阅读图书的时间,并绘制了统计图,如图所示.下面有四个推断:
①小明此次一共调查了100位同学;
②每天阅读图书时间不足15分钟的同学人数多于45﹣60分钟的人数;
③每天阅读图书时间在15﹣30分钟的人数最多;
④每天阅读图书时间超过30分钟的同学人数是调查总人数的20%.
根据图中信息,上述说法中正确的是( )
A.①③ B.①④ C.②③ D.②④
6、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是( )
A.这600名学生的“中华经典诵读”大赛成绩的全体是总体
B.50名学生是总体的一个样本
C.每个学生是个体
D.样本容量是50名
7、某中学就周一早上学生到校的方式问题,对八年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率是( )
八年级学生人数 | 步行人数 | 骑车人数 | 乘公交车人数 | 其他方式人数 |
300 | 75 | 12 | 135 | 78 |
A.0.1 B.0.25 C.0.3 D.0.45
8、要了解我市初中学生完成课后作业所用的时间,下列抽样最适合的是( )
A.随机选取城区6所初中学校的所有学生
B.随机选取城区与农村各3所初中学校所有女生
C.随机选取我市初中学校三个年级各1000名学生
D.随机选取我市初中学校中七年级5000名学生
9、我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有( )
A.0种 B.1种 C.2种 D.3种
10、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )
A.2000名学生的数学成绩 B.2000
C.被抽取的50名学生的数学成绩 D.50
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知某校学生来自A、B、C三个地区,这三个地区的学生人数比是1:3:2,如图所示的扇形图表示上述分布情况,则代表C地区的扇形圆心角是_____°.
2、全面调查和抽样调查是收集数据的两种方式._______收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;_______有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
3、下列调查中,样本具有代表性的有________.
①为了了解我校学生课外作业负担情况,抽取七(1)班学生调查;
②为了了解班上学生的睡眠时间,调查班上学号为偶数的学生;
③为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查;
④为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数.
4、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.
5、已知一个样本,27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,24,26,27,28,30,以2为组距画出频数分布直方图.
解:(1)计算最大值与最小值的差:______.
(2)确定组数与组距:已知组距为2,则,因此定为______组
(3)列频数分布表:
分组 | 划记 | 频数 |
2 | ||
3 | ||
8 | ||
4 | ||
3 | ||
合计 |
| 20 |
(4)画频数分布直方图:
三、解答题(5小题,每小题10分,共计50分)
1、如图所示是一位病人的体温记录折线图.
看图回答下列问题:
(1)护士每隔几小时给病人量一次体温?
(2)这位病人的体温最高是多少?最低是多少?
(3)他在4月10日18时的体温是多少?
(4)他的体温在哪段时间下降最快﹖哪些时间最为稳定?
(5)从体温看,这位病人的病情是在恶化还是在好转?
2、调查你们班同学出生时的体重(或身高),然后将数据适当分组,并绘制相应的频数直方图,看看你们班大多数同学出生时的体重(或身高)处于哪个范围.
3、2021年央视春晩,数十个节目给千家万户送上了丰富的“年夜大餐”.某校随机对八年级部分学生进行了一次调查,对最喜欢相声《年三十的歌》(记为A)、歌曲《牛起来》(记为B)、武术表演《天地英雄》(记为C)、小品《开往春天的幸福》记为D)的同学进行了统计(每位同学只选择一个最喜欢的节目),绘制了以下不完整的统计图,请根据图中信息解答问题:
(1)求本次接受调查的学生人数.
(2)求扇形统计图中D所在扇形的圆心角度数.
(3)将条形统计图补充完整.
4、体育委员统计了全班同学60秒跳绳的次数,并列出下面的频数分布表:
次数 | |||||||
频数 | 2 | 4 | 21 | 13 | 8 | 4 | 1 |
(1)全班有多少学生?
(2)组距是多少?组数是多少?
(3)跳绳次数在范围的学生有多少?占全班学生的百分之几?
(4)画出适当的统计图表示上面的信息.
(5)你怎样评价这个班的跳绳成绩?
5、某班男女生人数比例如图(1)所示,如果用图(2)的正方形表示该班全体人数,你能在图(2)中直观地表示该班男女生人数的比例关系吗?
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据抽样调查与普查的适用范围进行判断即可.
【详解】
解:A、D中为出售的产品,适合抽样调查;不符合要求;
B中元旦的车流量较大,适合抽样调查;不符合要求;
C中新冠核酸检查关乎每个人的身心健康,适合普查,符合要求;
故选C.
【点睛】
本题考查了抽样调查与普查.解题的关键在于区分二者的适用范围.
2、D
【解析】
【分析】
根据样本的定义:从总体中取出的一部分个体叫做这个总体的一个样本,依此即可求解.
【详解】
解:根据样本的定义可得,在这个问题中,样本是2000名考生的数学成绩.
故选:D
【点睛】
本题考查了总体、个体、样本和样本容量:我们把所要考察的对象的全体叫做总体;把组成总体的每一个考察对象叫做个体;从总体中取出的一部分个体叫做这个总体的一个样本;一个样本包括的个体数量叫做样本容量,解题的关键是掌握样本的有关概念.
3、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
4、D
【解析】
【分析】
根据统计图中各分数的人数最大判断A正确,由横轴的数据差判断B正确,由各分数的人数最少判断C正确,由及格的人数相加判断D错误.
【详解】
解:A. 得分在70~80分的人数最多,故该项不符合题意;
B. 组距为10,故该项不符合题意;
C. 人数最少的得分段的频数为2,故该项不符合题意;
D. 得分及格(≥60)的有12+14+8+2=36人,故该项符合题意;
故选:D.
【点睛】
此题考查了条形统计图,正确理解横轴及纵轴的意义,掌握各分数的对应人数是解题的关键.
5、A
【解析】
【分析】
根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.
【详解】
解:①小明此次一共调查了10+60+20+10=100(人),此结论正确;
②由频数分布直方图知,每天阅读图书时间不足15分钟的人数与45-60分钟的人数相同,均为10人,此结论错误;
③每天阅读图书时间在15-30分钟的人数最多,有60人,此结论正确;
④每天阅读图书时间超过30分钟的人数占调查总人数的比例为=30%,此结论错误;
故选:A.
【点睛】
本题考查了读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
6、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;
B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;
C、每个学生的成绩是个体,故本选项错误,不符合题意;
D、样本容量是50,故本选项错误,不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.
7、B
【解析】
【分析】
用步行到校学生的频数除以学生总数即可求解.
【详解】
解:75÷300=0.25,
故选B.
【点睛】
本题考查了频率的计算方法,熟练掌握频率=频数÷总数是解答本题的关键.
8、C
【解析】
【分析】
抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【详解】
解:A、随机选取城区6所初中学校的所有学生,不具有代表性,故选项不符合题意;
B、随机选取城区与农村各3所初中学校所有女生,不具有代表性,故选项不符合题意;
C、随机选取我市初中学校三个年级各1000名学生,具有代表性,故选项符合题意;
D、随机选取我市初中学校中七年级5000名学生,不具有代表性,故选项不符合题意;
故选:C.
【点睛】
本题主要考查抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
9、B
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.
【详解】
解:1000名考生的成绩是总体的一个样本;故①不符合题意;
55000名考生的成绩是总体;故②不符合题意;
样本容量是1000,描述正确,故③符合题意;
故选B
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
10、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.
【详解】
解:A、2000名学生的数学成绩是总体,故选项不合题意;
B、2000是个体的数量,故选项不合题意;
C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;
D、50是样本容量,故选项不合题意;
故选C
【点睛】
本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.
二、填空题
1、120
【解析】
【分析】
根据三个地区的学生人数比求出扇形图上三个地区对应扇形的圆心角度数的比,进而可求出C地区的扇形圆心角.
【详解】
解:∵A、B、C三个地区的学生人数比是1:3:2.
∴A、B、C三个地区对应扇形的圆心角度数的比是1:3:2.
∴C地区的扇形圆心角为.
故答案为:120.
【点睛】
本题考查扇形统计图的圆心角,熟练掌握该知识点是解题关键.
2、 全面调查 抽样调查
【解析】
略
3、②③
【解析】
【分析】
根据抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,判断即可.
【详解】
①为了了解我校学生课外作业负担情况,抽取七(1)班学生调查,七(1)班不一定具有代表性,不符合题意;
②为了了解班上学生的睡眠时间,调查班上学号为偶数的学生,具有代表性,符合题意;
③为了了解一批洗衣粉的质量情况,从中随意抽取50袋进行调查,具有代表性,符合题意;
④为了了解奥林匹克森林公园每天的游园人数,抽查一年中每个星期天的游园人数,星期天抽查不具有代表性,不符合题意.
故答案为:②③.
【点睛】
本题考查在作调查时收集数据的代表性问题,掌握抽样调查必须要具有代表性,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性,这是解题关键.
4、108°
【解析】
【分析】
先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:,利用360°×30%计算即可.
【详解】
解:统计的人数为:60+90+150=300人,
骑自行车的人数为:90人,
骑自行车的人数所占百分比为:,
∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.
故答案为:108°.
【点睛】
本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.
5、 32-23=9 5
【解析】
略
三、解答题
1、(1)6小时;(2)最高体温是39摄氏度,最低体温是36摄氏度;(3)37摄氏度;(4)4月9日的6时--12时体温下降最快,4月11日12时-18时最为稳定;(5)好转.
【解析】
【分析】
(1)由折线统计图可以看出:护士每隔12-6=6小时给病人量一次体温;
(2)折线图中最高的点表示温度最高,最低的点表示温度最低,由此即可求出答案;
(3)从折线统计图可以看出:他在4月10日18时的体温是37摄氏度;
(4)从折线统计图可以看出:4月10日的18时-4月11日0时体温下降最快,4月11日12时-18时最为稳定;
(5)曲线呈现下降的趋势,这个病人的病情好转了.
【详解】
解:(1)由折线统计图可以看出:护士每隔12-6=6小时给病人量一次体温;
(2)这个病人的最高体温是39摄氏度,最低体温是36摄氏度;
(3)他在4月10日18时的体温是37摄氏度;
(4)他的体温在4月9日的6时--12时体温下降最快,4月11日12时-18时最为稳定;
(5)从体温看,这位病人的病情是在好转.
【点睛】
本题考查的是折线统计图的综合运用;读懂统计图,从统计图中得到必要的信息是解决问题的关键;从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.
2、见解析
【解析】
【分析】
先调查,将我们班同学出生时候的体重数据进行分组列表,然后绘制频数直方图,进而分析可得学出生时的题中处于那个范围.
【详解】
调查所得数据,分组如下:
体重(kg) | |||||
人数 | 4 | 16 | 11 | 4 | 5 |
绘制频数直方图如下:
从频数直方图可知,大多数同学出生时的体重处于3.6-4.0kg之间.
【点睛】
本题考查了调查与统计,绘制频数分布表,绘制频数直方图,掌握频数分布表和直方图是解题的关键.
3、(1)50人;(2)36°;(3)见解析
【解析】
【分析】
(1)根据B的人数除以所占的百分比得到接受调查的学生人数;
(2)先求出D所占百分比,然后用360°×它所占百分比即可;
(3)先求出C所占百分比,再求出C的人数,进而得出C中男生人数;用总人数乘A占的百分比得出A的人数进而得出A中女生人数,然后补全条形统计图即可;
【详解】
解:(1)根据题意得:(人)
答:本次接受调查的人数是50人;
(2)D占的百分比,
D所在的扇形圆心角的度数为;
(3)C占的百分比为1-(20%+40%+10%)=30%,
C的人数为50×30%=15(人),即C中男生为15-8=7(人);
A的人数为50×20%=10(人),A中女生人数为10-6=4(人),
补全条形统计图,如图所示:
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
4、(1)53人;(2)20,7;(3)34,约64%;(4)见解析;(5)见解析
【解析】
【分析】
(1)根据频数分布表的数据,把所有频数相加即可得到全班学生总人数;
(2)根据频数分布表,可知一共是7个小组,并且每个小组的组距是20,即可求解;
(3)根据频数分布表得到范围内学生人数,利用“部分所占百分比=部分÷总体”计算即可;
(4)根据频数分布表的数据,用跳绳次数作为横轴,学生人数作为纵轴,画出频数分布直方图即可;
(5)根据频数分布表的数据大小特征,进行判断即可.
【详解】
解:(1)由题可得,2+4+21+13+8+4+1=53(名),
∴全班有53名学生;
(2)由频数分布表可得,组距为20,组数为7;
(3)21+13=34(名),,
∴跳绳次数在范围的学生有34名,约占全班学生的64%;
(4)用频数分布直方图表示数据如下;
(5)由表和图可以看出,跳绳次数大部分落在100次到160次之间,其他区域较少,次数在100次到120次的同学个数最多,有21个,而次数在,,,范围内的同学较少,总共只有11个.
【点睛】
本题主要考查了频数分布表,熟练掌握基本知识及直方图的作图方法是解题的关键.
5、见解析
【解析】
【分析】
根据扇形统计图的比例关系,在正方形中按比例画出男女生的比例即可.注意:一般情况下用圆和扇形代表总体和部分要比其他形式更加直观方便.
【详解】
如图所示
在扇形统计图中,是从圆的圆心出发,用乘该部分所占比例,得到角度后画扇形的;但在正方形的图中,若从正方形的中心出发,则不能用乘该部分所占比例,得到角度再分割正方形.
【点睛】
本题考查了扇形统计图,理解扇形统计图是解题的关键.
数学八年级下册第十八章 数据的收集与整理综合与测试巩固练习: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试巩固练习,共21页。试卷主要包含了下列调查中,最适合抽样调查的是,以下调查中,适宜全面调查的是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试达标测试: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试达标测试,共18页。试卷主要包含了下列调查中,适合采用全面调查等内容,欢迎下载使用。
初中数学第十八章 数据的收集与整理综合与测试巩固练习: 这是一份初中数学第十八章 数据的收集与整理综合与测试巩固练习,共19页。试卷主要包含了新型冠状病毒肺炎,下列说法中等内容,欢迎下载使用。