初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试综合训练题
展开八年级数学下册第十八章数据的收集与整理专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是( )
A.2 B.0.02 C.4 D.0.04
2、下列调查中,最适合采用普查方式的是( )
A.调查某品牌电视的使用寿命 B.调查毕节市元旦当天进出主城区的车流量
C.调查我校七(1)班新冠核酸检查结果 D.调查某批次烟花爆竹的燃放效果
3、下列事件中,调查方式选择合理的是( )
A.为了解某批次汽车的抗撞击能力,选择全面调查
B.为了解某市中学生每天阅读时间的情况,选择全面调查
C.为了解某班学生的视力情况,选择全面调查
D.为选出某校短跑最快的学生参加全市比赛,选择抽样调查
4、为了反映今天的气温变化情况,你认为选择哪种统计图最恰当( )
A.频数直方图 B.条形统计图 C.扇形统计图 D.折线统计图
5、2022年北京冬季奥运会将在2022年2月4日至20日在北京市和张家口市联合举行.要反应我国在最近五届冬季奥运会上获得奖牌总数的变化情况最好应选择( )
A.统计表 B.条形统计图 C.折线统计图 D.扇形统计图
6、要了解我市初中学生完成课后作业所用的时间,下列抽样最适合的是( )
A.随机选取城区6所初中学校的所有学生
B.随机选取城区与农村各3所初中学校所有女生
C.随机选取我市初中学校三个年级各1000名学生
D.随机选取我市初中学校中七年级5000名学生
7、下列调查方式中,不合适的是( )
A.调查本班同学的体育达标情况,采用普查调查的方式
B.了解“神州十三号”载人飞船的零部件状况,采用普查调查的方式
C.疫情期间,了解全校师生入校时体温情况,采用抽样调查的方式
D.调查郑州市电视台《郑州大民生》栏目的收视率,采用抽样调查的方式
8、为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是( )
A.此次调查的总体是600名学生 B.此次调查属于全面调查
C.此次调查的个体是被抽取的学生 D.样本容量是50
9、为了完成下列任务,你认为最适合采用普查的是( )
A.了解某品牌电视的使用寿命 B.了解一批西瓜是否甜
C.了解某批次烟花爆竹的燃放效果 D.了解某隔离小区居民新冠核酸检查结果
10、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为了解中学生获取资讯的主要渠道,设置“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(必选且只能选一项),随机抽取50名中学生进行问卷调查,根据调查结果绘制条形图如图该调查的方式是________,图中的值是________.
2、为促进城市交通更加文明,公共秩序更加优良,各个城市陆续发布“车让人”的倡议,此倡议得到了市民的一致赞赏.为了更好地完善“车让人”倡议,某市随机抽取一部分市民对“车让人”的倡议改进意见支持情况进行统计,分为四类:. 加大倡议宣传力度;. 加大罚款力度;. 明确倡议细则;. 增加监控路段,并将统计结果绘制成如图所示的两幅不完整的统计图.则扇形统计图中的度数为__________.
3、为了解某学校七年级学生每周平均课外阅读时间的情况,随机抽查了50名学生,对其每周平均课外阅读时间进行统计, 绘制了一个不完整的扇形统计图,根据图中提供的信息,阅读3小时对应扇形图的圆心角的大小为_________度.
4、扇形图能清楚地表示出各部分在总体中所占的_______. 扇形图通过扇形的大小来反映各个部分占总体的百分比.且扇形的大小是由_______的大小决定的.
条形图能得出具体的人数,扇形图能得出各部分的百分比.
5、如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩最高分与最低分的差是_________分.
三、解答题(5小题,每小题10分,共计50分)
1、新冠疫情期间,某校开展线上教学.为了解该校九年级10个班500名学生线上数学学习情况,返校后进行了数学考试.在10个班中随机抽样了部分同学的考试成绩(得分均为整数,最低分60分)进行整理,并分别绘制成扇形统计图和频数分布直方图.部分信息如下:
(1)样本中的学生共有 人,图1中59.5﹣69.5的扇形圆心角是 ;
(2)补全图2频数分布直方图;
(3)考前年级规定,成绩由高到低前40%的同学可以奖励,小玲的成绩为88分,请判断她能否得到奖励.并说明理由.
2、一位病人每天下午需要测量一次血压,下表是该病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160单位.
星期 | 一 | 二 | 三 | 四 | 五 |
收缩压的变化 (与前一天比较) | 升30单位 | 降20单位 | 升17单位 | 升18单位 | 降20单位 |
(1)请算出星期五该病人的收缩压;
(2)请用折线统计图表示该病人这5天的收缩压情况.
3、为了了解某地区60~75岁的老年人的锻炼情况,利用公安机关户籍网,随机电话调查了该区60~75岁的300名老人平均每天的锻炼时间,整理得到下面的表格:
平均每天锻炼时间 | 人数 | 占被调查数的百分比 | ||
男 | 女 | 合计 | ||
1h以内(含1h) | 43 | 83 | 126 | 42% |
1-2h(含2h) | 20 | 28 | 48 | 16% |
2h以上 | 7 | 5 | 12 | 4% |
不参加锻炼 | 77 | 37 | 114 | 38% |
合计 | 147 | 153 | 300 | 100% |
(1)男性老年人参加锻炼的人数有________人,女性老年人参加锻炼的人数有________人,老年人中,参加锻炼的占被调查者的________%;
(2)不参加锻炼的老年人中,男性大约是女性的几倍?
(3)根据此表数据分析,你对该区老年人的锻炼情况有什么建议吗?
(4)对本题的课题进行调查时,如果清晨到公园或市人民广场询问300名老年人,或在某居民小区调查10名老年人,你认为这样得到的数据,可以作为调查分析、得出结论的依据吗?请说明理由.
4、为了了解长春市冬季的天气变化情况,热爱气象观察的小明记录了2021年11月份30天的天气情况,具体信息如下:
日期 | 最高气温 | 最低气温 | 天气 | 日期 | 最高气温 | 最低气温 | 天气 |
11﹣01 | 4℃ | 0℃ | 多云 | 11﹣16 | 2℃ | ﹣2℃ | 晴 |
11﹣02 | 9℃ | 3℃ | 阴 | 11﹣17 | 6℃ | ﹣1℃ | 阴 |
11﹣03 | 12℃ | 2℃ | 晴 | 11﹣18 | 4℃ | ﹣6℃ | 多云 |
11﹣04 | 15℃ | ﹣2℃ | 阴 | 11﹣19 | 0℃ | ﹣6℃ | 多云 |
11﹣05 | 15℃ | 10℃ | 多云 | 11﹣20 | 0℃ | ﹣7℃ | 多云 |
11﹣06 | 2℃ | ﹣6℃ | 多云 | 11﹣21 | ﹣4℃ | ﹣9℃ | 阴 |
11﹣07 | ﹣3℃ | ﹣4℃ | 多云 | 11﹣22 | ﹣8℃ | ﹣12℃ | 多云 |
11﹣08 | 9℃ | ﹣4℃ | 多云 | 11﹣23 | ﹣8℃ | ﹣15℃ | 晴 |
11﹣09 | ﹣3℃ | ﹣6℃ | 多云 | 11﹣24 | ﹣7℃ | ﹣14℃ | 晴 |
11﹣10 | ﹣2℃ | ﹣5℃ | 小雪 | 11﹣25 | ﹣5℃ | ﹣13℃ | 多云 |
11﹣11 | 6℃ | 2℃ | 多云 | 11﹣26 | ﹣3℃ | ﹣13℃ | 多云 |
11﹣12 | ﹣1℃ | ﹣7℃ | 晴 | 11﹣27 | 0℃ | ﹣1℃ | 多云 |
11﹣13 | 4℃ | ﹣6℃ | 多云 | 11﹣28 | 6℃ | ﹣4℃ | 多云 |
11﹣14 | 12℃ | 9℃ | 阴 | 11﹣29 | ﹣2℃ | ﹣7℃ | 多云 |
11﹣15 | 2℃ | ﹣4℃ | 晴 | 11﹣30 | ﹣4℃ | ﹣11℃ | 多云 |
请你帮助小明同学把以上数据整理成统计图表.
2021年11月份长春市最低气温统计表
最低气温分组 | 频数 | 频率 |
10℃及10℃以上 |
|
|
大于等于5℃小于10℃ |
|
|
大于等于0℃小于5℃ | 4 |
|
大于等于﹣5℃小于0℃ | 9 | 0.3 |
大于等于﹣10℃小于﹣5℃ | a |
|
﹣10℃以下 | b | m |
(1)补全条形统计图;
(2)2021年11月份长春市最低气温统计表中a= ;b= ;m= .
5、小颖一天的时间安排统计图如图所示.
(1)根据图中的数据制作扇形统计图,表示小颖一天的时间安排;
(2)比较两幅统计图的不同;
(3)制作扇形统计图表示你一天的作息情况.
-参考答案-
一、单选题
1、D
【解析】
【分析】
先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.
【详解】
解:该班级学生这次体能评定为“较差”的频数是:
则该班级学生这次体能评定为“较差”的频率是:
故选D
【点睛】
本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.
2、C
【解析】
【分析】
根据抽样调查与普查的适用范围进行判断即可.
【详解】
解:A、D中为出售的产品,适合抽样调查;不符合要求;
B中元旦的车流量较大,适合抽样调查;不符合要求;
C中新冠核酸检查关乎每个人的身心健康,适合普查,符合要求;
故选C.
【点睛】
本题考查了抽样调查与普查.解题的关键在于区分二者的适用范围.
3、C
【解析】
【分析】
全面调查是指对总体中每个个体都进行的调查,一般适用于总体中个体数量不太多的情况;抽样调查是指不必要或不可能对总体进行全面调查时,就从总体中抽取一部分个体进行调查,然后根据调查数据来推断总体的情况;根据全面调查与抽样调查的含义即可确定正确答案.
【详解】
了解汽车的抗撞击能力具有破坏性,用抽样调查,
∴A选项不合题意,
某市中学生人数较多,适合抽样调查,
∴B选项不合题意,
一个班的学生人数较少,适合选择全面调查,
∴C选项符合题意,
选出短跑最快的学生,每个学生都有可能,应选择全面调查,
∴D选项不符合题意,
故选:C.
【点睛】
本题考查了全面调查与抽样调查,掌握两者的含义是本题的关键.
4、D
【解析】
【分析】
首先要清楚每一种统计图的特点:频数直方图能够显示各组频数分布的情况;条形统计图能很容易看出数量的多少;折线统计图不仅容易看出数量的多少,而且能反映数量的增减变化情况;扇形统计图能反映部分与整体的关系;由此根据情况选择即可.
【详解】
解:如果想反映一天的气温变化,选择折线统计图合适,
故选:D.
【点睛】
本题考查统计图的选择,解答此题要熟练掌握统计图的特点,根据实际情况灵活选择.
5、C
【解析】
【分析】
可根据扇形统计图、折线统计图、条形统计图各自的特点,分析得结论
【详解】
解:因为折线统计图能直观的反应数量的变化情况,
所以要反应我国在最近五届冬季奥运会上获得奖牌总数的变化情况应选择折线统计图.
故选:C.
【点睛】
本题考查了根据统计图的特点,选择统计图,解题的关键是掌握各统计图的特点,扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
6、C
【解析】
【分析】
抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【详解】
解:A、随机选取城区6所初中学校的所有学生,不具有代表性,故选项不符合题意;
B、随机选取城区与农村各3所初中学校所有女生,不具有代表性,故选项不符合题意;
C、随机选取我市初中学校三个年级各1000名学生,具有代表性,故选项符合题意;
D、随机选取我市初中学校中七年级5000名学生,不具有代表性,故选项不符合题意;
故选:C.
【点睛】
本题主要考查抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
7、C
【解析】
【分析】
根据普查和抽样调查方式的特点进行逐项判断即可.
【详解】
解:A、调查本班同学的体育达标情况,人数比较少,适合采用普查调查的方式,正确;
B、了解“神州十三号”载人飞船的零部件状况,要求精准,适合采用普查调查的方式正确;
C、疫情期间,了解全校师生入校时体温情况,要求精准,适合采用普查调查的方式,错误;
D、调查郑州市电视台《郑州大民生》栏目的收视率,人数太多,范围太广,适合抽样调查方式,正确,
故选:C.
【点睛】
本题考查判断普查和抽样调查,理解普查和抽样调查的特点是解答的关键.
8、D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、此次调查的总体是某校七年级学生的身高情况,故本选项不合题意;
B、此次调查属于抽样调查,故本选项不合题意;
C、此次调查的个体是每一名七年级学生的身高情况,故本选项不合题意;
D、样本容量是50.故本选项符合题意.
故选:D.
【点睛】
本题考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
9、D
【解析】
【分析】
普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、了解某品牌电视的使用寿命,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
B、了解一批西瓜是否甜,调查带有破坏性,应用抽样调查方式,故此选项不合题意;
C、了解某批次烟花爆竹的燃放效果,调查带有破坏性,适合选择抽样调查,故此选项不符合题意;
D、了解某隔离小区居民新冠核酸检查结果,对结果的要求高,结果必须准确,应用全面调查方式,故此选项符合题意.
故选:D.
【点睛】
本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
10、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二、填空题
1、 抽样调查 24
【解析】
【分析】
根据 “随机抽取50名中学生进行该问卷调查”可得该调查方式是抽样调查,根据调查的样本容量为50列出方程6+10+8+a+12=50,解方程即可.
【详解】
解:由题意知,该调查方式是抽样调查,
由样本容量为50可知:6+10+6+a+4=50,
解得a=24,
故答案为:抽样调查;24.
【点睛】
此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
2、
【解析】
【分析】
利用A的人数除以所占总数的百分比求出总数,再求出D的百分数,再求对应角度即可得结论.
【详解】
解:由题意总数(本),
∵D占,
∴圆心角,
故答案为:.
【点睛】
本题考查条形统计图,条形统计图等知识,解题的关键是知道圆心角=360°×百分比.
3、144
【解析】
【分析】
首先计算出阅读3小时所占圆心角的度数,再乘以360°即可得出结论.
【详解】
解:阅读3小时所占圆心角的度数为1-16%-10%-10%-24%=40%,
360°×40%=144°,
故答案为:144.
【点睛】
本题考查了扇形统计图,正确的识别图形是解题的关键.
4、 百分比 圆心角
【解析】
略
5、25
【解析】
【分析】
先从统计图中读出这6次成绩的最高分与最低分,然后相减即可.
【详解】
解:根据折线统计图可知,这6次成绩分别是(单位:分):
65,75,60,80,70,85
其中,最高分是85分,最低分是60分,
所以,最高分与最低分的差是85-60=25(分).
故答案为:25.
【点睛】
本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
三、解答题
1、(1)50,36°;(2)见解析;(3)能得奖,见解析
【解析】
【分析】
(1)用“79.5~89.5”的人数除以它们所占的百分比可得到调查的总人数;用360°乘以59.5~69.5”这一范围的人数占总人数的百分比,即可得出答案;
(2)求出“69.5~74.5”这一范围的人数即可补全图2频数分布直方图;
(3)求出成绩由高到低前40%的参赛选手人数为50×40%=20(人),由88>84.5,即可得出结论.
【详解】
(1)样本中的学生共有(10+8)÷36%=50(人),
59.5﹣69.5的扇形圆心角度数为360°×=36°,
故答案为:50、36°;
(2)69.5﹣74.5对应的人数为50﹣(4+8+8+10+8+3+2)=7,
补全频数分布直方图如下:
(3)能得到奖励.理由如下:
∵本次比赛参赛选手50人,
∴成绩由高到低前40%的人数为50×40%=20,
又∵88>84.5,
∴能得到奖励.
【点睛】
本题考查了扇形统计图、频数直方图等知识,读懂统计图中的信息是关键.
2、(1)185单位;(2)见解析
【解析】
【分析】
(1)根据上个星期日的收缩压为160单位和每天收缩压的变化情况求解即可;
(2)以160单位为0点,根据表格中每天收缩压的变化情况在折线统计图中表示即可.
【详解】
解:(1)160+30-20+17+18-20=185单位;
(2)可以以160单位为0点,得到下图.
【点睛】
此题考查了有理数的加减混合运算的应用和折线统计图的表示方法,解题的关键是根据题意列出算式.
3、(1)70,116,62;(2)2倍;(3)要增强该地区老年人“生命在于运动”的观念;(4)不可以,理由见解析
【解析】
【分析】
(1)观察表格可得出男性老年人和女性老年人参加锻炼的人数,由此进行解答;
(2)由表格可知不参加锻炼的老年人中,其中男性有77人,女性有37人,进而可得到男性人数和女性人数的倍数关系;
(3)此题答案不唯一,根据图表分析参加锻炼的人数不太多,可以就注重锻炼来分析;
(4)可以根据抽样调查中样本的代表性进行解答.
【详解】
解: (1)男性老年人参加锻炼的人数有43+20+7=70(人),女性参加锻炼的人数有83+28+5=116(人);老年人中,参加锻炼的占被调查者的.
(2)不参加锻炼的老年人中,其中男性有77人,女性有37人,故男性大约是女性的2倍.
(3)根据此表数据分析:不参加锻炼的老年人约占38%,可见该地区的老年人锻炼意识不强,尤其是男性老年人,只有半数的男性老年人参加锻炼,所以要增强该地区老年人“生命在于运动”的观念.
(4)不可以,因为,清晨到公园或市民广场的老年人都是注意锻炼的老年人,不能代表该区所有的老年入的锻炼情况,不具有广泛的代表性,即样本不具有代表性、广泛性,故这种调查方法得出的结论不符合实际.
【点睛】
本题考查抽样调查的知识,解题的关键是对表格进行正确分析进而得到答案.
4、 (1)见解析
(2)9、6、0.2
【解析】
【分析】
(1)由已知数据知,晴天的有6天,多云的有18天,阴的有5天,小雪的有1天,据此补全图形即可;
(2)由已知数据知,大于等于-10℃小于-5℃的天数a=9,-10℃以下的天数b=6,其对应频率m=6÷30=0.2.
(1)
由已知数据知,晴天的有6天,多云的有18天,阴的有5天,小雪的有1天,
补全图形如下:
(2)
由已知数据知,大于等于-10℃小于-5℃的天数a=9,
-10℃以下的天数b=6,其对应频率m=6÷30=0.2,
故答案为:9、6、0.2.
【点睛】
本题主要考查条形统计图,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
5、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)根据条形统计图中的各项所占的百分比乘以360度,得到各项所占圆心角的度数,进而绘制扇形统计图;
(2)根据条形统计图和扇形统计图的区别即可;
(3)根据(1)的方法绘制扇形统计图即可.
【详解】
(1)睡觉,,
学习,,
活动,,
吃饭,,
其他,,
(2)例如,从条形统计图中可以得到每项安排的具体时间,从扇形统计图中可以看到每项安排所需时间占全天时间的百分比.只要能用自己的语言清楚地表达出两种统计图的不同即可.
(3)例如,本人睡觉9小时,学习8小时,活动3小时,吃饭和其他各2小时,
则睡觉,,
学习, ,
活动,,
吃饭,,
其他,,
绘制扇形统计图如图所示,
【点睛】
本题考查了条形统计图和扇形统计图,绘制扇形统计图,掌握两种统计图的特点以及求扇形统计图圆心角的度数是解题的关键.
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试综合训练题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试综合训练题,共21页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课时训练: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课时训练,共20页。试卷主要包含了下列调查中,适合采用全面调查,下列问题中,适合抽样调查的是,下列调查中适合普查的是等内容,欢迎下载使用。
初中冀教版第十八章 数据的收集与整理综合与测试课后复习题: 这是一份初中冀教版第十八章 数据的收集与整理综合与测试课后复习题,共20页。