冀教版八年级下册第十八章 数据的收集与整理综合与测试练习题
展开八年级数学下册第十八章数据的收集与整理定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,调查方式合适的是( )
A.为了了解100个灯泡的使用寿命,选择全面调查
B.为了了解某景区全年的游客量,选择抽样週查
C.为了了解一批炮弹的杀伤半径,选择全面调查
D.为了了解一批袋装食品防腐剂是否超标,选择全面调查
2、某校为了解本校七年级500名学生的身高情况,随机选择了该年级100名学生进行调查.关于下列说法:①本次调查方式属于抽样调查;②每个学生是个体;③100名学生是总体的一个样本;④总体是该校七年级500名学生的身高.其中正确的说法有( )
A.1个 B.2个 C.3个 D.4个
3、下列问题中,适合抽样调查的是( )
A.市场上某种食品含糖量是否符合国家标准
B.审核书稿中的错别字
C.旅客上飞机前的安检
D.了解我校初二某班男生身高状况
4、下列调查方式中,适合用普查方式的是( )
A.对某市学生课外作业时间的调查 B.对神州十三号载人航天飞船的零部件进行调查
C.对某工厂生产的灯泡寿命的调查 D.对某市空气质量的调查
5、下列调查中最适合采用全面调查的是( )
A.调查甘肃人民春节期间的出行方式 B.调查市场上纯净水的质量
C.调查我市中小学生垃圾分类的意识 D.调查某航班上的乘客是否都持有“绿色健康码”
6、为全面掌握小区居民新冠疫苗接种情况,社区工作人员设计了以下几种调查方案:
方案一:调查该小区每栋居民楼的10户家庭成员的疫苗接种情况;
方案二:随机调查该小区100位居民的疫苗接种情况;
方案三:对本小区所有居民的疫苗接种情况逐一调查统计.
在上述方案中,能较好且准确地得到该小区居民疫苗接种情况的是( )
A.方案一 B.方案二 C.方案三 D.以上都不行
7、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
8、读书能积累语言,丰富知识,陶冶情操,提高文化底蕴.某中学八年级一班统计今年1~8月“书香校园”读书活动中全班同学的课外阅读数量(单位:本),并绘制了如图所示的折线统计图,下列说法正确的是( ).
八年级一班学生1~8月课外阅读数量折线统计图
A.课外阅读数量最少的月份是1月份
B.课外阅读数量比前一个月增加的月份共有4个月
C.平均每月课外阅读数量大于58本
D.阅读数量超过45本的月份共有4个月
9、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是( )
A.2 B.0.02 C.4 D.0.04
10、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、2021年12月02日是“世界完全对称日”,人们在数字“20211202”中感受到了对称之美,下一个“世界完全对称日”将是2030年03月02日.在数字“20211202”中,数字“2”出现的频率是______.
2、下列调查中,用全面调查方式收集数据的有________.
①为了了解学生对任课教师的意见,学校要求全体学生网上匿名评价教师;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查;
③某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查;
④为了了解全班同学的作业完成情况,对学号为奇数的学生进行调查.
3、如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩最高分与最低分的差是_________分.
4、超市为了制定某个时间段收银台开放方案,统计了这个时间段顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间1-2分钟表示大于或等于1分钟而小于2分钟,其它类同),这个时间段内顾客等待时间不少于5分钟的人数为________.
5、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)
(1)了解一批圆珠笔芯的使用寿命________.
(2)了解全班同学周末时间是如何安排的________.
(3)了解我国八年级学生的视力情况________.
(4)了解中央电视台春节联欢晚会的收视率________.
(5)了解集贸市场出售的蔬菜中农药的残留情况________.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.
三、解答题(5小题,每小题10分,共计50分)
1、某校为了解学生“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人必须报且只能报一项)进行调查.下面是根据调查数据绘制的两幅不完整的统计图请根据图中提供的信息,解答下面的问题:
(1)此次共调查了多少名学生;
(2)扇形统计图中“艺术鉴赏”部分的圆心角是多少度;
(3)选“数学思维”的人数比“科技制作”的人数多几分之几?
2、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:
(1)求本次抽取的学生的人数.
(2)请根据以上信息直接在答题卡中补全条形统计图.
(3)求扇形统计图中的值.
(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.
3、某年母亲节,某电视台作了一个调查,结果如图所示.
(1)从这幅图中,你得到什么信息,有什么感想?
(2)就这个问题,对全班同学进行调查,看看结果怎样.
4、吴老师为了解本班学生的数学学习情况,对某次数学考试成绩(成绩取整数,满分为100分)作了统计,绘制成如下频数分布表和频数分布直方图.
分组 | 49.5-59.5 | 59.5-69.5 | 69.5-79.5 | 79.5-89.5 | 89.5-100.5 | 合计 |
频数 | 3 |
| 10 | 26 | 6 |
|
频率 | 0.06 | 0.10 | 0.20 | 0.52 |
| 1.00 |
请你根据图表提供的信息,解答下列问题:
(1)补全频数分布表和频数分布直方图;
(2)如果用扇形统计图表示这次数学考试成绩,那么成绩在69.5~79.5范围内的扇形圆心角的度数为________度.
5、某校对学生“一周课外阅读时间”的情况进行随机抽样调查,调查结果如图所示:(图中条形图形代表的是:例如阅读时间1至2小时的人数为14人,并且在时间上含前一个边界值1,不含后一个边界值2,以此类推…)
(1)随机抽样调查的总人数是多少?
(2)用扇形统计图表示随机抽样调查的情况;
(3)若该校有1500名学生,则根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数是多少?
-参考答案-
一、单选题
1、B
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,但所费人力、物力和时间较少分析解答即可.
【详解】
A.为了了解100个灯泡的使用寿命,因调查具有破坏性,宜采用抽样调查,故不符合题意;
B.为了了解某景区全年的游客量,因工作量很大,宜采用抽样週查,故符合题意;
C.为了了解一批炮弹的杀伤半径,因调查具有破坏性,宜采用抽样调查,故不符合题意;
D.为了了解一批袋装食品防腐剂是否超标,因调查具有破坏性,宜采用抽样调查,故不符合题意;
故选B
【点睛】
本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、B
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是我校八年级学生期中数学考试成绩,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:①本次调查方式属于抽样调查.故①正确;
②每个学生的身高情况是个体.故②错误;
③100名学生的身高情况是总体的一个样本.故③错误;
④总体是该校七年级500名学生的身高.故④正确;
故正确的说法有2个.
故选:B.
【点睛】
本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
3、A
【解析】
【分析】
根据抽样调查的定义依次分析判断即可得到答案.
【详解】
解:市场上某种食品含糖量是否符合国家标准适合抽样调查,故选项A符合题意;
审核书稿中的错别字适合全面调查,故选项B不符合题意;
旅客上飞机前的安检适合全面调查,故选项C不符合题意;
了解我校初二某班男生身高状况适合全面调查,故选项D不符合题意;
故选:A.
【点睛】
此题考查了抽样调查的定义,能理解定义并正确区分抽样调查与全面调查是解题的关键.
4、B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A.对某市学生课外作业时间的调查工作量比较大,宜采用抽样调查;
B.对神州十三号载人航天飞船的零部件进行调查非常重要,宜采用普查;
C.对某工厂生产的灯泡寿命的调查具有破坏性,宜采用抽样调查;
D.对某市空气质量的调查工作量非常大,宜采用抽样调查;
故选B.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、D
【解析】
【分析】
根据抽样调查和全面调查的定义逐一判断即可.
【详解】
解|:A、调查甘肃人民春节期间的出行方式,应采用抽样调查,故不符合题意;
B、调查市场上纯净水的质量,应采用抽样调查,故不符合题意;
C、调查我市中小学生垃圾分类的意识,应采用抽样调查,故不符合题意;
D、调查某航班上的乘客是否都持有“绿色健康码”,应采用全面调查,故符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、C
【解析】
【分析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.
【详解】
解:因为全面掌握小区居民新冠疫苗接种情况,
所以对本小区所有居民的疫苗接种情况逐一调查统计.
故选:C.
【点睛】
本题考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.
7、C
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、B
【解析】
【分析】
根据折线统计图的信息依次进行判断即可.
【详解】
解:、课外阅读数量最少的月份是6月份,选项错误,不符合题意;
、课外阅读数量比前一个月增加的月份分别是2,5,7,8,共有4个月,选项正确,符合题意;
、每月阅读数量的平均数是小于58,选项错误,不符合题意;
、阅读数量超过45本的月份有2、3、5、7、8,共有5个月,选项错误,不符合题意;
故选:B.
【点睛】
本题考查了折线统计图,解题的关键是读懂统计图,从统计图中得到必要的信息是解决问题的关键,折线统计图表示的是事物的变化情况.
9、D
【解析】
【分析】
先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.
【详解】
解:该班级学生这次体能评定为“较差”的频数是:
则该班级学生这次体能评定为“较差”的频率是:
故选D
【点睛】
本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.
10、C
【解析】
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
二、填空题
1、##0.5
【解析】
【分析】
根据数字“20211202”中,数字“2”出现了4次,即可求数字“2”出现的频率.
【详解】
解:在数字“20211202”中,数字“2”出现了4次,
∴数字“2”出现的频率==.
故答案为:.
【点睛】
此题考查了频率,掌握频率=频数÷样本容量是解答此题的关键.
2、①③
【解析】
【分析】
根据抽样调查和全面调查的特点依次分析各项即可判断.
【详解】
解:①为了了解全校学生对任课教师的意见,学校向全校学生进行问卷调查,属于全面调查;
②为了了解初中生上网情况,某市团委对10所初中的部分学生进行调查,属于抽样调查;
③某班学生拟组织一次春游活动,为了确定春游的地点,向同学进行调查,属于全面调查;
④了解全班同学的作业完成情况,对学号为奇数的学生进行调查,属于抽样调查;
故答案为:①③
【点睛】
本题是抽样调查和全面调查的基础应用题,是中考常见题,难度一般,主要考查学生对统计方法的认识.
3、25
【解析】
【分析】
先从统计图中读出这6次成绩的最高分与最低分,然后相减即可.
【详解】
解:根据折线统计图可知,这6次成绩分别是(单位:分):
65,75,60,80,70,85
其中,最高分是85分,最低分是60分,
所以,最高分与最低分的差是85-60=25(分).
故答案为:25.
【点睛】
本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
4、16
【解析】
【分析】
根据题意和频数分布直方图可以得到这个时间段内顾客等待时间不少于5分钟的人数,找出等待5—6分钟,6—7分钟与7—8分钟的人数相加即可.
【详解】
解:由频数分布直方图可得,
这个时间段内顾客等待时间不少于5分钟的人数为:9+5+2=16,
故答案为:16.
【点睛】
本题考查频数分布直方图,解题的关键是明确题意,利用数形结合的思想解答问题.
5、 抽样调查 全面调查 抽样调查 抽样调查 抽样调查 全面调查
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.
(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.
(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.
(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.
(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.
故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
三、解答题
1、(1)50人;(2)144度;(3)选“数学思维”的人数比“科技制作”的人数多三分之一.
【解析】
【分析】
(1)用阅读写作的人数除以其所占百分比即可得到总人数;
(2)用360°乘以艺术鉴赏的所占百分比即可得到答案;
(3)先求出数学思维的人数,由此进行求解即可.
【详解】
解:(1)由题意得:调查的人数=50÷25%=200人,
答:得出人数为50人;
(2),
答:扇形统计图中“艺术鉴赏”部分的圆心角是144度;
(3)数学思维的人数:200﹣80﹣30﹣50=40人,科技制作的30人,
(40﹣30)÷30,
答:选“数学思维”的人数比“科技制作”的人数多三分之一.
【点睛】
本题主要考查了条形统计图与扇形统计图信息相关联,解题的关键在于能够准确根据题意求出总人数.
2、(1)200人;(2)图见解析;(3)20;(4).
【解析】
【分析】
(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;
(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;
(3)利用喜欢艺术学生的人数除以调查的总人数即可得;
(4)利用喜欢器乐的学生人数所占百分比乘以即可得.
【详解】
解:(1)(人),
答:本次抽取的学生有200人;
(2)喜欢书画的学生人数为(人),
由此补全条形统计图如下:
(3),
则;
(4),
答:喜欢器乐的学生人数所对应圆心角的度数为.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.
3、(1)答案不唯一.例如,在这次调查中,有较多的人知道母亲喜欢吃的菜,对母亲比较了解,但还有一部分人在这个方面做得不够;感想:是大部分人对于母亲还是很关心的.(2)见解析.
【解析】
【分析】
(1)根据图获取相应信息即可;
(2)分别统计出“不知道”、“没爱吃的”、“知道”各部分的人数,再进行分析.
【详解】
解:(1)根据图形可知,不知道母亲最爱吃的菜的人数占参加调查人数的;
知道母亲最爱吃的菜的人数占参加调查的人数的;
此次是在8个城市中有1095人参加调查;
由此得出:在这次调查中,有较多的人知道母亲喜欢吃的菜,对母亲比较了解,但还有一部分人在这个方面做得不够;
感想:大部分人对于母亲还是很关心的.
(2)对全班同学进行调查,分别统计出“不知道”、“没爱吃的”、“知道”各部分的人数,再对数据具体分析.
【点睛】
本题考查了扇形统计图,解题的关键是了解图形中各部分所代表的意义.
4、(1)见解析;(2)72
【解析】
【分析】
(1)根据69.5-79.5这一组的频数为10,频率为0.2,求出总人数,由此进行求解即可;
(2)依据扇形的圆心角度数=360°×占比进行求解即可.
【详解】
解:(1)∵69.5-79.5这一组的频数为10,频率为0.2,
∴总人数=10÷0.2=50人,
∴59.5-69.5这一组的人数=50×0.1=5人,
∴89.5-100.5这一组的频率=6÷50=0.12,
列表如下:
分组 | 49.5-59.5 | 59.5-69.5 | 69.5-79.5 | 79.5-89.5 | 89.5-100.5 | 合计 |
频数 | 3 | 5 | 10 | 26 | 6 | 50 |
频率 | 0.06 | 0.10 | 0.20 | 0.52 | 0.12 | 1.00 |
补全统计图如下:
(2)由题意可得成绩在69.5~79.5范围内的扇形圆心角的度数=360°×0.20=72°,
故答案为:72.
【点睛】
本题主要考查了频率与频数分布表,频数分布直方图,求扇形圆心角度数,解题的关键在于能够熟练掌握相关知识进行求解.
5、(1)100人;(2)见解析;(3)990人
【解析】
【分析】
(1)由条形统计图的数据直接相加,即可得到答案;
(2)由题意,分别求出每个时间段的百分比,然后画出扇形统计图即可;
(3)用1500乘以超过3小时的百分比,即可得到答案;
【详解】
解:(1)随机抽样调查的总人数是:
14+20+35+25+6=100人;
(2)根据题意,则
1至2小时的百分比为:;
2至3小时的百分比为:;
3至4小时的百分比为:;
4至5小时的百分比为:;
5至6小时的百分比为:;
用扇形统计图表示随机抽样调查的情况;
(3)该校学生“一周课外阅读时间”超过3小时的人数是:
1500×(6% + 25% + 35%)=990(人);
答:根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数大约是990人;
【点睛】
本题考查了条形统计图以及扇形统计图,解题的关键是从条形图上可以清楚地看出各部分数量,从而进行计算.
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评,共20页。
2020-2021学年第十八章 数据的收集与整理综合与测试同步测试题: 这是一份2020-2021学年第十八章 数据的收集与整理综合与测试同步测试题,共21页。试卷主要包含了某校九年级,下列说法中正确的个数是个.,下列做法正确的是等内容,欢迎下载使用。
数学冀教版第十八章 数据的收集与整理综合与测试课后作业题: 这是一份数学冀教版第十八章 数据的收集与整理综合与测试课后作业题,共19页。