2020-2021学年第十八章 数据的收集与整理综合与测试当堂检测题
展开
这是一份2020-2021学年第十八章 数据的收集与整理综合与测试当堂检测题,共20页。试卷主要包含了下列调查方式中,不合适的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查方式,你认为最合适的是( )
A.对端午节期间市场上粽子质量情况,采用全面调查方式
B.旅客上飞机前的安检,采用抽样调查方式
C.调查本市居民对“垃圾分类”有关内容的了解程度,采用全面调查方式
D.调查“神舟十一号”飞船重要零部件的产品质量,采用全面调查方式
2、为了解某市七年级学生的一分钟跳绳成绩,从该市七年级学生中随机抽取100名学生进行调查,以下说法正确的是( )
A.这100名七年级学生是总体的一个样本B.该市七年级学生是总体
C.该市每位七年级学生的一分钟跳绳成绩是个体D.100名学生是样本容量
3、小明3分钟共投篮80次,进了50个球,则小明进球的频率是( )
A.80B.50C.1.6D.0.625
4、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易( )
A.一,二B.二,一C.一,一D.二,二
5、下列调查方式中,不合适的是( )
A.调查本班同学的体育达标情况,采用普查调查的方式
B.了解“神州十三号”载人飞船的零部件状况,采用普查调查的方式
C.疫情期间,了解全校师生入校时体温情况,采用抽样调查的方式
D.调查郑州市电视台《郑州大民生》栏目的收视率,采用抽样调查的方式
6、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )
A.2000名学生的数学成绩B.2000
C.被抽取的50名学生的数学成绩D.50
7、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
8、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对渝北区初中学生对防护新冠肺炎知识的了解程度的调查
B.对“神州十三号”飞船零部件安全性的检查
C.对某品牌手机电池待机时间的调查
D.对中央电视台2021年春节联欢晚会满意度的调查
9、七年级10个班开展“学雷锋做好人好事”活动,为了清楚表明三月份各班做好人好事的件数是多少,最好选用( )
A.折线统计图B.条形统计图
C.扇形统计图D.以上都不对
10、如图是一所学校对学生上学方式进行调查后,根据调查结果绘制了一个不完整的统计图,其中“其他”部分所对的圆心角度数是36°则步行部分所占的百分比是( )
A.36%B.40%C.45%D.50%
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、2021年4月25日-29日,福州举办第四届数字中国建设峰会,会务组要知道所有参会人员的体温状况,应采用的调查方式是__.(填“抽样调查”或“全面调查”)
2、扇形图能清楚地表示出各部分在总体中所占的_______. 扇形图通过扇形的大小来反映各个部分占总体的百分比.且扇形的大小是由_______的大小决定的.
条形图能得出具体的人数,扇形图能得出各部分的百分比.
3、某中学要了解八年级学生的视力情况,在全校八年级中抽取了30名学生进行检测,在这个问题中,总体是_______,样本是_______,样本容量是_______.
4、去年某市有9万名初中毕业生参加升学考试,为了了解这9万名考生的数学成绩,从中取2000名考生数学成绩进行统计分析.在这个抽样中,总体是________,个体是________,样本是________,样本容量是________.
5、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.
三、解答题(5小题,每小题10分,共计50分)
1、某地区随机抽调了一部分市民进行了一次法律知识测试,测试成绩(得分取整数)进行整理后分成五组,并绘制成频数直方图:
(1)这次活动共抽取了多少人测试?
(2)测试成绩的整体分布情况怎样?
2、中秋节是中国四大传统节日之一,中秋文化在世界上影响广泛,吃月饼是中秋节的一项重要习俗.下面图表是华联超市中秋节当天所销售月饼的一些信息,请根据图表中信息解答下面的问题.
(1)C品牌月饼一共卖了 个,总价是 元.
(2)A品牌月饼单价是B品牌月饼单价的,A、B品牌的月饼单价各多少元?
3、为了完成下列任务,你认为采用什么调查方式更合适?
(1)了解班级同学中哪个月份出生的人数最多;
(2)了解一批冷饮的质量是否合格;
(3)了解京剧在全校同学中的受欢迎程度;
(4)了解全国人口的平均寿命.
4、小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽取了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图.请结合统计图解答下列问题:
(1)求本次抽取的学生的人数.
(2)请根据以上信息直接在答题卡中补全条形统计图.
(3)求扇形统计图中的值.
(4)求扇形统计图中喜欢器乐的学生人数所对应的圆心角的度数.
5、为了提高长跑成绩,小彬坚持锻炼并于每周日记录下1500m的成绩:
小彬1500m成绩变化统计表
如果要更清楚地看出小彬成绩的变化情况,你选择统计图还是统计表?如果要方便、准确地获得他锻炼5星期后的跑步成绩,你会如何选择?
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A.对端午节期间市场上粽子质量情况具有破坏性,适合抽样调查,故选项A不符合题意;
B.旅客上飞机前的安检,意义重大,适合全面调查,故选项B不符合题意;
C.调查本市居民对“垃圾分类”有关内容的了解程度工作量大,适合抽样调查,故选项C不符合题意;
D.调查“神舟十一号”飞船重要零部件的产品质量,宜采用全面调查方式,故选项D符合题意;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A.这100名七年级学生的一分钟跳绳成绩是总体的一个样本,故该选项不符合题意;
B、该市七年级学生的一分钟跳绳成绩是总体,故该选项不符合题意;
C、该市每位七年级学生的一分钟跳绳成绩是个体,故该选项符合题意;
D、样本容量是100,故该选项不符合题意;
故选:C.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
3、D
【解析】
【分析】
根据频率等于频数除以数据总和,即可求解.
【详解】
∵小明共投篮80次,进了50个球,
∴小明进球的频率=50÷80=0.625,
故选D.
【点睛】
本题主要考查频数和频率,掌握“频率等于频数除以数据总和”是解题的关键.
4、A
【解析】
【分析】
根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
【详解】
解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易.
故选A.
【点睛】
条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键.
5、C
【解析】
【分析】
根据普查和抽样调查方式的特点进行逐项判断即可.
【详解】
解:A、调查本班同学的体育达标情况,人数比较少,适合采用普查调查的方式,正确;
B、了解“神州十三号”载人飞船的零部件状况,要求精准,适合采用普查调查的方式正确;
C、疫情期间,了解全校师生入校时体温情况,要求精准,适合采用普查调查的方式,错误;
D、调查郑州市电视台《郑州大民生》栏目的收视率,人数太多,范围太广,适合抽样调查方式,正确,
故选:C.
【点睛】
本题考查判断普查和抽样调查,理解普查和抽样调查的特点是解答的关键.
6、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.
【详解】
解:A、2000名学生的数学成绩是总体,故选项不合题意;
B、2000是个体的数量,故选项不合题意;
C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;
D、50是样本容量,故选项不合题意;
故选C
【点睛】
本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.
7、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
8、B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、对渝北区初中学生对防护新冠肺炎知识的了解程度的调查,适合采用抽样调查方式,故本选项不符合题意;
B、对“神州十三号”飞船零部件安全性的检查,适合采用全面调查(普查)方式,故本选项符合题意;
C、对某品牌手机电池待机时间的调查,适合采用抽样调查方式,故本选项不符合题意;
D、对中央电视台2021年春节联欢晚会满意度的调查,适合采用抽样调查方式,故本选项不符合题意;
故选:B
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、B
【解析】
【分析】
根据三种统计图的特点,判断即可.
【详解】
解:七年级10个班开展“学雷锋做好人好事”活动,为了清楚表明三月份各班做好人好事的件数是多少,最好选用:条形统计图,
故选:B.
【点睛】
本题考查了统计图的选择,熟练掌握三种统计图的特点是解题的关键.
10、B
【解析】
【分析】
先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比即可.
【详解】
解:∵其他部分对应的百分比为:×100%=10%,
∴步行部分所占百分比为1﹣(35%+15%+10%)=40%,
故选:B.
【点睛】
本题考查扇形统计图,熟知“扇形统计图中各部分所占百分比的计算方法和各部分所占百分比间的关系”是解答本题的关键.
二、填空题
1、全面调查
【解析】
【分析】
根据事件的特点,结合全面调查特点即可确定调查方式.
【详解】
∵第四届数字中国建设峰会参会人员有限,疫情的需要,
∴选全面调查.
故答案为:全面调查
【点睛】
根据事件的特点,结合全面调查特征确定答案,做题的关键是弄清全面调查的优点以及局限性.
2、 百分比 圆心角
【解析】
略
3、 八年级学生的视力情况 30名学生的视力情况 30
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量
【详解】
解:总体是八年级学生的视力情况,样本是30名学生的视力情况,样本容量是30,
故答案为:八年级学生的视力情况,30名学生的视力情况,30.
【点睛】
本题考查了总体、个体、样本、样本容量,解题的关键是要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4、 9万名考生的数学成绩 每名考生的数学成绩 被抽出的2000名考生的数学成绩 2000
【解析】
【分析】
根据抽样中总体、个体、样本以及样本容量的概念解答即可.
【详解】
根据题意,
在这个抽样中,总体是9万名考生的数学成绩,
个体是每名考生的数学成绩,
样本是被抽出的2000名考生的数学成绩,
样本容量是2000.
故答案为:9万名考生的数学成绩;每名考生的数学成绩;被抽出的2000名考生的数学成绩;2000.
【点睛】
本题主要考查了对抽样中总体、个体、样本以及样本容量的理解,属于基础题,掌握总体、个体、样本以及样本容量的概念是解题关键.
5、108°
【解析】
【分析】
先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:,利用360°×30%计算即可.
【详解】
解:统计的人数为:60+90+150=300人,
骑自行车的人数为:90人,
骑自行车的人数所占百分比为:,
∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.
故答案为:108°.
【点睛】
本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.
三、解答题
1、(1)48人;(2)测试成绩为70至80分的人数最多,不及格和90分以上的人相对较少.
【解析】
【分析】
(1)将每一组的频数相加即可求出这次活动共抽取的人数;
(2)根据统计图可知每一组的人数的多与少,进而即可作答.
【详解】
解:(1)根据题意得:3+12+18+9+6=48(人),
答:这次活动共抽取了48人测试;
(2)根据统计图可知:测试成绩为70至80分的人数最多,不及格和90分以上的人相对较少.
【点睛】
此题考查了频数(率)分布直方图,正确读懂频数分布直方图是解本题的关键.
2、(1)1000,2500;(2)A品牌月饼的单价是1.5元,B品牌月饼的单价是3元.
【解析】
【分析】
(1)把超市三种月饼总销售量看作单位“1”,其中A品牌的占20%,求出三种月饼的总数是多少个,C品牌占50%,用总数乘50%就是C品牌的个数,最后根据总价=单价×数量求出C品牌的总价;
(2)由A品牌月饼的单价是B品牌粽子的,设B品牌月饼的单价为x元,则A品牌月饼的单价为x元,然后根据总价=单价×数量,列方程解答后,即可求出各自的单价.
【详解】
解:(1)400÷20%=2000(个),
2000×50%=1000(个),
1000×2.5=2500(元),
所以,C品牌月饼一共卖了1000个,总价是2500元.
故答案为:1000,2500.
(2)设B品牌月饼的单价为x元,则A品牌月饼的单价为x元,由题意得:
600x+400×x=4900-2500
解得x=3,
3×=1.5(元).
所以,A品牌月饼的单价是1.5元,B品牌月饼的单价是3元.
【点睛】
此题考查了理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息解决有关的实际问题。
3、(1)普查;(2)抽样调查;(3)普查或抽样调查都可以;(4)抽样调查
【解析】
【分析】
对全体对象的调查叫全面调查,也叫普查;只对一部分个体进行的调查叫抽样调查,根据定义解答即可.
【详解】
解:(1)了解班级同学中哪个月份出生的人数最多应是普查;
(2)了解一批冷饮的质量是否合格应是抽样调查;
(3)了解京剧在全校同学中的受欢迎程度应是普查或抽样调查都可以;
(4)了解全国人口的平均寿命应是抽样调查.
【点睛】
此题考查普查和抽样调查,正确理解概念并应用解决问题是解题的关键.
4、(1)200人;(2)图见解析;(3)20;(4).
【解析】
【分析】
(1)根据喜欢棋类的学生的条形统计图和扇形统计图信息即可得;
(2)先根据(1)的结果求出喜欢书画的学生人数,再补全条形统计图即可得;
(3)利用喜欢艺术学生的人数除以调查的总人数即可得;
(4)利用喜欢器乐的学生人数所占百分比乘以即可得.
【详解】
解:(1)(人),
答:本次抽取的学生有200人;
(2)喜欢书画的学生人数为(人),
由此补全条形统计图如下:
(3),
则;
(4),
答:喜欢器乐的学生人数所对应圆心角的度数为.
【点睛】
本题考查了条形统计图和扇形统计图的信息关联、画条形统计图等知识点,熟练掌握统计调查的相关知识是解题关键.
5、见解析.
【解析】
【分析】
根据折线统计图的特点:能够清楚反映事物的变化情况,统计表的特点:可以将大量数据的分类结果清晰,一目了然的表达出来,由此进行求解即可.
【详解】
统计表和折线统计图都能反映出成绩的变化情况.相对而言,统计表反映的数据准确并且容易查找,但直观性不如统计图;统计图能直观地表示出变化情况,但从统计图中看出的数据往往不够准确,因此有的统计图会在相应的地方标上原始数据.在这个问题中,若想直观反映成绩变化,则选择折线统计图优势更明显;若想准确读出锻炼5星期后的成绩,则统计表更合适.
【点睛】
本题主要考查了统计图和统计表的选择,解题的关键在于能够熟练掌握二者的特点.
单价/元
数量/个
总价/元
A品牌
400
B品牌
600
C品牌
2.5
合计
——
——
4900
锻炼的星期数
1
2
3
4
5
6
成绩变化
相关试卷
这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试复习练习题,共21页。
这是一份2020-2021学年第十八章 数据的收集与整理综合与测试达标测试,共23页。试卷主要包含了以下调查中,适宜全面调查的是,下列做法正确的是等内容,欢迎下载使用。
这是一份2021学年第十八章 数据的收集与整理综合与测试课堂检测,共20页。试卷主要包含了下列调查方式中,不合适的是等内容,欢迎下载使用。