初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试测试题
展开
这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试测试题,共21页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是( )
A.200名学生的视力是总体的一个样本B.200名学生是总体
C.200名学生是总体的一个个体D.样本容量是1200名
2、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1B.2C.3D.4
3、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
4、如图是某中学学生上学方式的统计图,如果骑车的人有840人,那么乘地铁的人数有( )
A.2000个B.420个C.840个D.740个
5、某养羊场对200头生羊量进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中质量在77.5kg及以上的生羊的只数是( )
A.180B.140C.120D.110
6、下列调查方式中,适合用普查方式的是( )
A.对某市学生课外作业时间的调查B.对神州十三号载人航天飞船的零部件进行调查
C.对某工厂生产的灯泡寿命的调查D.对某市空气质量的调查
7、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量D.银川市中小学生的视力情况
8、下列调查中,调查方式选择合理的是 ( )
A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式
B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式
C.为了了解天门山景区的每天的游客客流量,选择全面调查方式
D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式
9、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对渝北区初中学生对防护新冠肺炎知识的了解程度的调查
B.对“神州十三号”飞船零部件安全性的检查
C.对某品牌手机电池待机时间的调查
D.对中央电视台2021年春节联欢晚会满意度的调查
10、长沙网红打卡点铜官窑古镇为迎接“五一”假期新增了骑马、威亚、卡丁车、低空飞行4项互动体验项目,并对部分游客所喜欢的项目进行调查问卷(每个游客均只选择一个喜欢的项目),统计如图,其中喜欢威亚的有80人,则本次调查的游客有( )人.
A.120B.160C.300D.400
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校图书管理员清理课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的扇形统计图,已知乙类书有90本,则丙类书的本数是__________.
2、小亮是一位足球爱好者,某次在练习罚点球时,他在10分钟之内罚球20次,共罚进15次,则小亮点球罚进的频率是________.
3、某中学要了解八年级学生的视力情况,在全校八年级中抽取了30名学生进行检测,在这个问题中,总体是_______,样本是_______,样本容量是_______.
4、为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是____°.
5、现将一组数据:21,25,23,25,27,29,25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5<x<28.5的频数是____.
三、解答题(5小题,每小题10分,共计50分)
1、甲、乙两公司近年的销售收入情况如图所示.
哪家公司近年的销售收入的增长速度较快?
2、调查你们班同学出生时的体重(或身高),然后将数据适当分组,并绘制相应的频数直方图,看看你们班大多数同学出生时的体重(或身高)处于哪个范围.
3、某校对学生“一周课外阅读时间”的情况进行随机抽样调查,调查结果如图所示:(图中条形图形代表的是:例如阅读时间1至2小时的人数为14人,并且在时间上含前一个边界值1,不含后一个边界值2,以此类推…)
(1)随机抽样调查的总人数是多少?
(2)用扇形统计图表示随机抽样调查的情况;
(3)若该校有1500名学生,则根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数是多少?
4、你喜欢气球吗?你喜欢什么颜色的气球?你能进行一次调查,以帮助气球生产厂家确定各种颜色气球的生产比例吗?几人组成一个调查小组.
(1)讨论下面几个问题:调查的目的、问题、对象是什么?选择怎样的调查方式?样本如何选取?调查所得数据如何处理?
(2)制订一个调查方案,展开调查.
(3)将各组的调查方案和调查结果在全班交流,讨论调查的一般步骤和抽样调查中的注意事项,并撰写一份调查报告,给有关厂家提供适当的信息.
5、一个面粉批发商统计了前48个星期的销售量(单位:):
请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据总体,样本,个体,样本容量的定义,即可得出结论.
【详解】
解:A.200名学生的视力是总体的一个样本,故本选项正确;
B.学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;
C.学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;
D.样本容量是1200,故本选项错误.
故选:A.
【点睛】
本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.
2、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
3、C
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、D
【解析】
【分析】
根据扇形统计图中的数据,可以计算出本次调查的总人数,然后即可计算出乘地铁的人数.
【详解】
解:由统计图可得,
调查的总人数为:840÷42%=2000,
乘地铁的人数有:2000×(1-42%-21%)=2000×37%=740,
故选:D.
【点睛】
此题考查扇形统计图的特点及作用,并且能够根据统计图提供的信息,解决有关的实际问题.
5、B
【解析】
【分析】
根据题意和直方图中的数据可以求得质量在77.5kg及以上的生猪数,本题得以解决.
【详解】
解:由直方图可得,
质量在77.5kg及以上的生猪:90+30+20=140(头),
故选B.
【点睛】
本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.
6、B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A.对某市学生课外作业时间的调查工作量比较大,宜采用抽样调查;
B.对神州十三号载人航天飞船的零部件进行调查非常重要,宜采用普查;
C.对某工厂生产的灯泡寿命的调查具有破坏性,宜采用抽样调查;
D.对某市空气质量的调查工作量非常大,宜采用抽样调查;
故选B.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、A
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.
【详解】
A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;
B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;
C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;
D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、对渝北区初中学生对防护新冠肺炎知识的了解程度的调查,适合采用抽样调查方式,故本选项不符合题意;
B、对“神州十三号”飞船零部件安全性的检查,适合采用全面调查(普查)方式,故本选项符合题意;
C、对某品牌手机电池待机时间的调查,适合采用抽样调查方式,故本选项不符合题意;
D、对中央电视台2021年春节联欢晚会满意度的调查,适合采用抽样调查方式,故本选项不符合题意;
故选:B
【点睛】
本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、D
【解析】
【分析】
利用喜欢威亚的频数80除以喜欢威亚的频率20%,即可得到该校本次调查中,共调查了多少名游客.
【详解】
解:本次调查的总人数为80÷20%=400(人),
故选:D.
【点睛】
本题考查了扇形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
二、填空题
1、135
【解析】
【分析】
根据乙类书籍有90本,占总数的30%即可求得总书籍数,丙类所占的比例是1-25%-30%,所占的比例乘以总数即可求得丙类书的本数.
【详解】
解:总数是:90÷30%=300(本),
丙类书的本数是:300×(1-25%-30%)=300×45%=135(本),
故答案为:135.
【点睛】
本题考查了扇形统计图,从扇形图上可以清楚地看出各部分数量和总数量之间的关系,正确求得书籍总数是关键.
2、0.75##34
【解析】
【分析】
根据频率=频数÷总数进行求解即可.
【详解】
解:∵小亮在10分钟之内罚球20次,共罚进15次,
∴小亮点球罚进的频率是,
故答案为:0.75.
【点睛】
本题主要考查了根据频数求频率,熟知频率=频数÷总数是解题的关键.
3、 八年级学生的视力情况 30名学生的视力情况 30
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量
【详解】
解:总体是八年级学生的视力情况,样本是30名学生的视力情况,样本容量是30,
故答案为:八年级学生的视力情况,30名学生的视力情况,30.
【点睛】
本题考查了总体、个体、样本、样本容量,解题的关键是要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4、43.2
【解析】
【分析】
先求出阅读时间不少于6小时的人数,再根据公式计算即可.
【详解】
解:阅读时间不少于6小时的频数为50-7-13-24=6,
∴一周课外阅读时间不少于6小时的这部分扇形的圆心角是43.2°,
故答案为:43.2.
【点睛】
此题考查了求部分的圆心角度数,正确计算某组的频数及掌握圆心角度数的计算公式是解题的关键.
5、4
【解析】
【分析】
先将各数据划记到对应的小组,再正确数出第四组26.5~28.5的频数即可.
【详解】
解:这组数据中26.5<x<28.5的数据,即是数据27、28出现的次数,
通过统计数据27、28共出现4次,
故答案为:4.
【点睛】
本题考查频率、频数的概念,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.
三、解答题
1、甲公司近年的销售收入增长速度较快;理由见解析.
【解析】
【分析】
结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.
【详解】
解:甲公司近年的销售收入增长速度较快;
理由:从折线统计图中可以看出:
甲公司2006年的销售收入为50万元,2010年约为90万元,则从2006~2010年甲公司增长了90-50=40万元;
乙公司2006年的销售收入为50万元,2010年约为70万元,则从2006~2010年乙公司增长了70-50=20万元.
则销售收入增长速度较快的是甲.
【点睛】
本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.
2、见解析
【解析】
【分析】
先调查,将我们班同学出生时候的体重数据进行分组列表,然后绘制频数直方图,进而分析可得学出生时的题中处于那个范围.
【详解】
调查所得数据,分组如下:
绘制频数直方图如下:
从频数直方图可知,大多数同学出生时的体重处于3.6-4.0kg之间.
【点睛】
本题考查了调查与统计,绘制频数分布表,绘制频数直方图,掌握频数分布表和直方图是解题的关键.
3、(1)100人;(2)见解析;(3)990人
【解析】
【分析】
(1)由条形统计图的数据直接相加,即可得到答案;
(2)由题意,分别求出每个时间段的百分比,然后画出扇形统计图即可;
(3)用1500乘以超过3小时的百分比,即可得到答案;
【详解】
解:(1)随机抽样调查的总人数是:
14+20+35+25+6=100人;
(2)根据题意,则
1至2小时的百分比为:;
2至3小时的百分比为:;
3至4小时的百分比为:;
4至5小时的百分比为:;
5至6小时的百分比为:;
用扇形统计图表示随机抽样调查的情况;
(3)该校学生“一周课外阅读时间”超过3小时的人数是:
1500×(6% + 25% + 35%)=990(人);
答:根据调查结果可估算该校学生“一周课外阅读时间”超过3小时的人数大约是990人;
【点睛】
本题考查了条形统计图以及扇形统计图,解题的关键是从条形图上可以清楚地看出各部分数量,从而进行计算.
4、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)分析题意,根据题目信息,即可回答;
(2)结合(1)中调查的目的、问题和对象,选择合适的调查方式即可制定合理的调查方案;
(3)根据抽样调查的特点,写一份调查报告即可.
【详解】
(1)调查的目的:帮助气球生产厂家确定各种颜色气球的生产比例;
问题:调查周围的人喜欢气球吗?如果喜欢,那么喜欢什么颜色的气球?
对象:接受调查的人可选择抽样调查的调查方式;
样本的选取:可根据自己的想法和具体情况选择合适的样本(此答案不唯一,只要合理即可);调查所得数据的处理:统计调查所得数据,计算出喜欢气球的人数和喜欢各种颜色气球的人数,然后计算比例;
(2)结合(1)中信息即可制定合理的调查方案,如:
问卷调查表:
简要说明:在学校每个班里挑选学号为3的倍数的同学,然后让这些人填写《问卷调查表》,然后统计每种颜色所占比例,形成扇形统计图,即可确定各种颜色气球生产比例;
(3)抽样调查的一般步骤包括:1、搜集统计资料,2、调查方案设计,3、实施调查过程,4、数据处理分析,5、提写调查报告;
抽样调查的注意点:1.随机取样,2.取样具有代表性,3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样;
根据抽样调查的特点,自己写一份调查报告即可.
【点睛】
本题考查了调查的目的、问题、对象以及普查和抽样调查的概念及应用.在实际问题中体会普查和抽样调查的特点及应用情景.能够运用所学知识分析、解決数学问题和实际问题.
5、见解析
【解析】
【分析】
先算出数据最大值与最小值之差,取组距进行分组即可得频数分布表,频数分布直方图;
【详解】
解:计算最大值与最小值的差:
数据的最小值是18.5t,最大值是24.4t,(t),
决定组距与组数:
取组距为1t,则分成6组,
设每星期销售面粉xt,则可分为:
,,,
,,
频数分布表:
频数分布直方图:
∵这组数据的中位数在,
∴这批面粉批发商每星期进22吨面粉比较合适.
【点睛】
本题考查了频数分布表,频数分布直方图,解题的关键是将熟练掌握绘制频数分布表的方法.
24.4
19.1
22.7
20.4
21.0
21.6
22.8
20.9
21.8
18.6
24.3
20.5
19.7
23.5
21.6
19.8
20.3
22.4
20.2
22.3
21.9
22.3
21.4
19.2
23.5
20.5
22.1
22.7
23.2
21.7
21.1
23.1
23.4
23.3
21.0
24.1
18.5
21.5
24.4
22.6
21.0
20.0
20.7
21.5
19.8
19.1
19.1
22.4
体重(kg)
人数
4
16
11
4
5
你喜欢的气球颜色是什么?(在相应颜色下面画“√”)
红
橙
黄
绿
青
蓝
紫
其他
销售量
划记
频数
正一
6
正丅
7
正
9
正正丅
12
正
8
正一
6
合计
48
相关试卷
这是一份2020-2021学年第十八章 数据的收集与整理综合与测试课堂检测,共20页。试卷主要包含了下列说法中,下列调查中,最适合抽样调查的是等内容,欢迎下载使用。
这是一份初中冀教版第十八章 数据的收集与整理综合与测试同步达标检测题,共19页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。
这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试练习,共19页。试卷主要包含了下列说法中正确的个数是个.,下列适合于抽样调查的是,下列调查中,调查方式合适的是等内容,欢迎下载使用。