初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试一课一练
展开八年级数学下册第十八章数据的收集与整理同步测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,最适合采用全面调查(普查)方式的是( )
A.对兰州市初中生每天阅读时间的调查 B.对市场上大米质量情况的调查
C.对华为某批次手机防水功能的调查 D.对某班学生肺活量情况的调查
2、2022年北京冬季奥运会将在2022年2月4日至20日在北京市和张家口市联合举行.要反应我国在最近五届冬季奥运会上获得奖牌总数的变化情况最好应选择( )
A.统计表 B.条形统计图 C.折线统计图 D.扇形统计图
3、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
4、下面调查统计中,适合采用普查方式的是( )
A.华为手机的市场占有率 B.“现代”汽车每百公里的耗油量
C.“国家宝藏”专栏电视节目的收视率 D.乘坐飞机的旅客是否携带了违禁物品
5、某电器商城统计了近五年销售的某种品牌的电冰箱销量,为了清楚地反应该品牌销量的增减变化情况,应选择使用的统计图是( )
A.条形统计图 B.扇形统计图
C.折线统计图 D.以上都可以
6、下列调查中,适合采用抽样调查的是( ).A.了解全市中学生每周使用手机的时间 B.对乘坐飞机的乘客进行安全检查
C.调查我校初一某班的视力情况 D.检查“北斗”卫星重要零部件的质量
7、2021年3月12日北京市统计局发布了《北京市2020年国民经济和社会发展统计公报》,其中列举了2020年北京市居民人均可支配收入.如图是小明同学根据年北京市居民人均可支配收入绘制的统计图.
根据统计图提供的信息,下面四个判断中不合理的是( )
A.2020年北京市居民人均可支配收入比2016年增加了16904元
B.年北京市居民人均可支配收入逐年增长
C.2017年北京市居民人均可支配收入的增长率约为
D.年北京市居民人均可支配收入增长幅度最大的年份是2018年
8、下列调查中,适合用普查方式的是( )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
9、护士为了描述某病人某一天的体温变化情况,以下最合适的统计图是( )
A.扇形统计图 B.条形统计图 C.折线统计图 D.直方图
10、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、根据如图所示的统计图,回答问题:该批发市场 2021 年 9~12 月份水果类销售额最多月份的销售额是_____万元.
2、________和________都能够反映每个对象出现的频繁程度;________表示每个对象出现的次数与总次数的比值.
3、为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是____°.
4、为了解各年龄段的观众对某电视剧的收视率,某校的一个兴趣小组,调查了部分观众的收视情况并分成A,B,C,D,E,F六组进行整理,其频数分布直方图如图.
(1)E组的频数为______,被调查的观众为______人.
(2)若某村观众的人数为1 200人,估计该村50岁以上的观众有______人.
5、绘制频数分布直方图的一般步骤:
(1)计算最大值与最小值的差______;
(2)决定______与______;
(3)列 ______;
(4)以______表示数据,纵轴表示频数,画频数分布直方图.
三、解答题(5小题,每小题10分,共计50分)
1、请将下面表格中的身高数据按分段,用频数直方图表示.
下表是某校七(2)班的同学入学信息表:
学号 | 性别 | 身高/cm | 入学成绩 | 学号 | 性别 | 身高/cm | 入学成绩 | ||||
语文 | 数学 | 英语 | 语文 | 数学 | 英语 | ||||||
1 | 女 | 167 | 81 | 88 | 优 | 16 | 女 | 162 | 83 | 85 | 优 |
2 | 男 | 162 | 78 | 85 | 良 | 17 | 女 | 157 | 86 | 80 | 优 |
3 | 女 | 165 | 86 | 90 | 优 | 18 | 女 | 160 | 92 | 93 | 优 |
4 | 男 | 160 | 81 | 99 | 中 | 19 | 男 | 164 | 83 | 89 | 优 |
5 | 女 | 165 | 94 | 86 | 优 | 20 | 女 | 161 | 75 | 77 | 良 |
6 | 女 | 167 | 83 | 75 | 良 | 21 | 男 | 162 | 86 | 97 | 优 |
7 | 女 | 165 | 88 | 94 | 优 | 22 | 男 | 164 | 91 | 91 | 优 |
8 | 男 | 166 | 79 | 98 | 优 | 23 | 女 | 163 | 87 | 82 | 优 |
9 | 女 | 159 | 72 | 65 | 中 | 24 | 男 | 154 | 82 | 88 | 优 |
10 | 男 | 169 | 86 | 97 | 优 | 25 | 男 | 172 | 68 | 70 | 中 |
11 | 男 | 168 | 91 | 96 | 优 | 26 | 男 | 153 | 88 | 95 | 优 |
12 | 男 | 158 | 80 | 93 | 良 | 27 | 男 | 156 | 80 | 87 | 优 |
13 | 男 | 160 | 85 | 89 | 优 | 28 | 男 | 163 | 82 | 81 | 优 |
14 | 女 | 159 | 90 | 84 | 优 | 29 | 男 | 164 | 78 | 75 | 良 |
15 | 女 | 162 | 91 | 89 | 优 | 30 | 女 | 161 | 89 | 87 | 优 |
2、垃圾分类是一项“利国利民”的民生工程,需要全社会的共同参与.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,如图表是七年级各班一周收集的可回收垃圾的重量(千克)的频数表和频数分布直方图(每组含前一个边界值,不含后一个边界值).
某校七年级各班一周收集的可回收垃圾的重量的频数表
组别(kg) | 频数 |
4.0~4.5 | 2 |
4.5~5.0 | a |
5.0~5.5 | 3 |
5.5~6.0 | 1 |
(1)求a的值
(2)已知收集的可回收垃圾以1.1元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到60元?
3、大数据在推动经济发展,改善公共服务等方面日益显示出巨大的价值.某市为推动大数据应用,针对市民最关心的四类生活信息(A:政府服务信息,B:城市医疗信息,C:教育资源信息,D:交通信息)进行了民意调查(被调查者每人限选一项),并制作成如下的不完全统计图表.请根据图中提供的信息解答下列问题:
(1)求出本次调查的总人数;
(2)求出关注城市医疗信息的人数,并补全条形统计图;
(3)在扇形统计图中,求出D所对应的圆心角的度数.
4、为了解地铁开通对节约“出行时间”影响情况,对地铁1号线上某趟列车上的部分乘客进行随机抽样调查.将调查结果分为、、、四类,其中表示“出行节约0﹣10分钟”,表示“出行节约10﹣30分钟”,表示“出行节约30分钟以上”,表示“其他情况”,并根据调查结果绘制了图①、图②这两个不完整的统计图表.
(1)求这次调查的总人数.
(2)补全条形统计图.
(3)在图②的扇形统计图中,求类所对应的扇形圆心角的度数.
5、某校在校园文化艺术节期间,举办了歌咏、小品、书法、绘画共四个项目的比赛,要求每名学生必须参加且仅参加一项.小明随机调查了部分学生的报名情况,根据调查结果绘制出了如下不完整的“各项目参赛人数及比例”统计表,请根据图表中提供的信息,解答下列的问题:
各项目参赛人数及比例统计表
项目 | 人数 | 百分比 |
歌咏 | 20 | 10% |
小品 | 60 | a |
书法 | b | 40% |
绘画 | 40 | 20% |
(1)本次调查中共抽取了 名学生
(2)表中的a= ,b=
(3)根据统计表中的数据和所学统计图的知识,任选绘制一幅统计图,能直观反映各项目的参加人数或参赛人数的比例.
-参考答案-
一、单选题
1、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;
B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;
C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;
D、对某班学生肺活量情况的调查,人数较少,适合普查;
故选:D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、C
【解析】
【分析】
可根据扇形统计图、折线统计图、条形统计图各自的特点,分析得结论
【详解】
解:因为折线统计图能直观的反应数量的变化情况,
所以要反应我国在最近五届冬季奥运会上获得奖牌总数的变化情况应选择折线统计图.
故选:C.
【点睛】
本题考查了根据统计图的特点,选择统计图,解题的关键是掌握各统计图的特点,扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
3、C
【解析】
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
4、D
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.
【详解】
解:A、对华为手机的市场占有率的调查范围广,适合抽样调查,故此选项不符合题意;
B、对“现代”汽车每百公里的耗油量的调查范围广适合抽样调查,故此选项不符合题意;
C、对“国家宝藏”专栏电视节目的收视率的调查范围广,适合抽样调查,故此选项不符合题意;
D、对乘坐飞机的旅客是否携带了违禁物品的调查情况适合普查,故此选项符合题意;
故选:D.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、C
【解析】
【分析】
由扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目,据此可得答案.
【详解】
解:∵为了清楚地反应该品牌销量的增减变化情况,
∴结合统计图各自的特点,应选择折线统计图.
故选:C.
【点睛】
本题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.
6、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、了解全市中学生每周使用手机的时间,适合采用抽样调查,符合题意;
B、对乘坐飞机的乘客进行安全检查,适合采用全面调查,不符合题意;
C、调查我校初一某班的视力情况,适合采用全面调查,不符合题意;
D、检查“北斗”卫星重要零部件的质量,适合采用全面调查,不符合题意,
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
7、D
【解析】
【分析】
根据表格数据分别求得2020年比2016年的增长量,即可判断A,根据条形统计图直接可判断B选项,根据2016,2017年的人均可支配收入即可求得2017年北京市居民人均可支配收入的增长率,从而判断C,根据每年的增长量即可判断D选项.
【详解】
A、2020年北京市居民人均可支配收入比2016年增加了元,正确,故本选项不合题意;
B、年北京市居民人均可支配收入逐年增长,正确,故本选项不合题意;
C、2017年北京市居民人均可支配收入的增长率,正确,故本选项不合题意;
D、69434-67756=1678,67756-62361=5395,62361-57230=5131,57230-52530=4700,则年北京市居民人均可支配收入增长幅度最大的年份是2019年,故本选项合题意;
故选:D.
【点睛】
本题考查了条形统计图,从条形统计图获取信息是解题的关键.
8、D
【解析】
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、C
【解析】
【分析】
根据题意,描述某病人某一天的体温变化情况最合适的应该反映变化趋势,则选取折线统计图,据此求解即可.
【详解】
解:∵护士为了描述某病人某一天的体温变化情况,
∴最合适的统计图是折线统计图
故选C
【点睛】
本题考查了根据实际选取合适的统计图,理解题意是解题的关键.条形统计图的特点:能清楚的表示出数量的多少;折线统计图的特点:不但可以表示出数量的多少,而且能看出各种数量的增减变化情况;扇形统计图比较清楚地反映出部分与部分、部分与整体之间的数量关系.
10、B
【解析】
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
二、填空题
1、20
【解析】
【分析】
用每个月的销售总额乘以水果类的百分比,将各个月的水果类销售额比较即可得到答案.
【详解】
解:9月水果类销售额为8025%=20万元,
10月水果类销售额为9012%=10.8万元,
11月水果类销售额为6020%=12万元,
12月水果类销售额为7015%=10.5万元,
∴该批发市场 2021 年 9~12 月份水果类销售额最多月份的销售额是20万元,
故答案为:20.
【点睛】
此题考查了有理数乘法的实际应用,读懂统计图并正确理解题意列乘法解答是解题的关键.
2、 频率 频数 频率
【解析】
【分析】
根据频率与频数的意义以及频率的计算方法填空即可.
【详解】
频率和频数都能够反映每个对象出现的频繁程度;频率表示每个对象出现的次数与总次数的比值.
故答案为:频率;频数;频率
【点睛】
本题考查了频率与频数的意义以及频率的计算方法,理解频率与频数的意义是解题的关键.
3、43.2
【解析】
【分析】
先求出阅读时间不少于6小时的人数,再根据公式计算即可.
【详解】
解:阅读时间不少于6小时的频数为50-7-13-24=6,
∴一周课外阅读时间不少于6小时的这部分扇形的圆心角是43.2°,
故答案为:43.2.
【点睛】
此题考查了求部分的圆心角度数,正确计算某组的频数及掌握圆心角度数的计算公式是解题的关键.
4、 12 50 432
【解析】
略
5、 极差 组距 组数 频数分布表 横轴
【解析】
略
三、解答题
1、见解析
【解析】
【分析】
根据所给信息表先填好身高的频数分布表,进而即可画出相应的频数分布直方图.
【详解】
解:由信息表可知:
身高/cm | 频数 |
153≤x<156 | 2 |
156≤x<159 | 3 |
159≤x<162 | 7 |
162≤x<165 | 9 |
165≤x<168 | 6 |
168≤x<171 | 2 |
171≤x<174 | 1 |
∴频数分布直方图如图所示:
【点睛】
本题考查了画频数分布表以及频数分布直方图的能力,利用信息表画出相应的身高统计表是解决本题的关键.
2、(1)a=4;(2)不能达到
【解析】
【分析】
(1)由频数分布直方图可得4.5~5.0的频数a的值;
(2)先求出该年级这周收集的可回收垃圾的质量的最大值,再乘以单价即可得出答案.
【详解】
解:(1)由频数分布直方图可知4.5~5.0的频数a=4;
(2)∵该年级这周收集的可回收垃圾的质量小于4.5×2+5.0×4+5.5×3+6.0=51.5(kg),
∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×1.1=56.65(元),
∴该年级这周收集的可回收垃圾被回收后所得金额不能达到60元.
【点睛】
本题主要考查了频数分布表,频数分布直方图,解题的关键在于能够准确读懂题意.
3、 (1)1000人
(2)见解析
(3)144°
【解析】
【分析】
(1)根据样本的容量= C组最关心的教育资源信息的人数200人÷C组占20%求积即可;
(2)利用样本的容量减去A、C、D组人数即可得出B组人数,可补画条形图;
(3)先求D组人数占样本的百分比,用百分比×360°,得出扇形D的圆心角.
(1)
解:∵从条形图得C组最关心的教育资源信息的人数为200人,从扇形图C组占20%,
∴本次调查的总人数为:(人)
(2)
最关心B:城市医疗信息的人数为:1000-250-200-400=1000-850=150人,
条形统计图如下
(3)
∵关注交通信息的人数有400人,占样本1000人的百分比为400÷1000×100%=40%
∴扇形统计图中D所对应的圆心角的度数为:.
【点睛】
本题考查从条形图和扇形图获取信息与处理信息,样本的容量,补画条形图,求扇形圆心角,掌握从条形图和扇形图获取信息与处理信息,样本的容量,补画条形图,求扇形圆心角是解题关键.
4、(1)50人;(2)见解析;(3)108°
【解析】
【分析】
(1)利用类的人数除以类所占百分比,即可求解;
(2)求出“出行节约30分钟以上”的人数,即可求解;
(3)用360°乘以类所占的百分比,即可求解.
【详解】
解:(1)调查的总人数是:(人).
(2)“出行节约30分钟以上”的人数有 (人),
补全图形,如图所示:
(3)A类所对应的扇形圆心角的度数是.
【点睛】
本题主要考查了条形统计图和扇形统计图,明确题意,准确获取信息是解题的关键.
5、(1)200;(2)30%,80;(3)见解析
【解析】
【分析】
(1)用歌咏的人数除以它的占比即可得到答案;
(2)根据百分比=某一项目的人数除以抽取的总人数进行求解即可;
(3)反应百分比应该选择扇形统计图即可.
【详解】
解:(1)由题意得:抽取的学生人数=20÷10%=200(名),
故答案为:200;
(2)由题意得:小品的占比=60÷200=30%,书法的人数=200×40%=80,
∴a=30%,b=80,
故答案为:30%,80;
(3)用扇形统计图表示如图所示:
【点睛】
本题主要考查了统计调查的应用,解题的关键在于能够准确根据题意求出抽取的总人数.
数学八年级下册第十八章 数据的收集与整理综合与测试习题: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试习题,共21页。
初中数学第十八章 数据的收集与整理综合与测试综合训练题: 这是一份初中数学第十八章 数据的收集与整理综合与测试综合训练题,共22页。试卷主要包含了下列调查方式中,合适的是等内容,欢迎下载使用。
冀教版八年级下册第十八章 数据的收集与整理综合与测试随堂练习题: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试随堂练习题,共19页。试卷主要包含了下列调查中,最适合抽样调查的是,下列适合于抽样调查的是等内容,欢迎下载使用。