初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试精练
展开八年级数学下册第十八章数据的收集与整理达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在实数,,,,中,无理数出现的频率是( )
A. B. C. D.
2、为了记录一个病人的体温变化情况,应选择的统计图是( )
A.条形统计图 B.扇形统计图 C.折线统计图 D.以上都不是
3、下列调查中,适合进行全面调查的是( )
A.《新闻联播》电视栏目的收视率
B.全国中小学生喜欢上数学课的人数
C.某班学生的身高情况
D.市场上某种食品的色素含量是否符合国家标准
4、为了解某市七年级学生的一分钟跳绳成绩,从该市七年级学生中随机抽取100名学生进行调查,以下说法正确的是( )
A.这100名七年级学生是总体的一个样本 B.该市七年级学生是总体
C.该市每位七年级学生的一分钟跳绳成绩是个体 D.100名学生是样本容量
5、某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有( )
A.这种调查的方式是抽样调查 B.800名学生是总体
C.每名学生的期中数学成绩是个体 D.100名学生的期中数学成绩是总体的一个样本
6、护士为了描述某病人某一天的体温变化情况,以下最合适的统计图是( )
A.扇形统计图 B.条形统计图 C.折线统计图 D.直方图
7、为了解某初中1200名学生的视力情况,随机抽查了200名学生的视力进行统计分析,下列说法正确的是( )
A.200名学生的视力是总体的一个样本 B.200名学生是总体
C.200名学生是总体的一个个体 D.样本容量是1200名
8、下列说法中正确的是( )
A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式
B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本
C.为了了解全市中学生的睡眠情况,应该采用普查的方式
D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200
9、我县有55000名学生参加考试,为了了解考试情况,从中抽取1000名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1000名考生是总体的一个样本;②55000名考生是总体;③样本容量是1000.其中正确的说法有( )
A.0种 B.1种 C.2种 D.3种
10、下列调查方式中,合适的是( )
A.要了解某市百万居民的生活状况,采取普查方式
B.要了解一批导弹的杀伤范围,采用普查方式
C.要了解外地游客对旅游景点的满意程度,采用抽样调查
D.要了解全国中学生的业余爱好,采用普查的方式
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、某校学生自主建立了一个学习用品义卖社团,已知八年级200名学生义卖所得金额的频数分布直方图如图所示,那么40~50元这个小组的组频率是__________.
2、某校学生会调查本校学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“名人传记类”的频数为96人,频率为0.2,那么被调查的学生人数为__________人.
3、如图是某同学6次数学测验成绩的折线统计图,则该同学这6次成绩最高分与最低分的差是_________分.
4、杨老师对自己所教班级(共50名学生)的一次数学测验成绩进行统计.结果是:成绩在80.5~90.5(分)这一组的频数是15,那么本班成绩在80.5~90.5分之间的频率是__________.
5、为纪念中国人民抗日战争的胜利,9月3日,某校开展中国人民抗日战争胜利纪念日征文活动.为了解学生参加活动情况,从全校6000名学生中,随机抽取了120名学生进行调查.在这次抽样调查中,样本容量是____.
三、解答题(5小题,每小题10分,共计50分)
1、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
2、一个面粉批发商统计了前48个星期的销售量(单位:):
24.4 | 19.1 | 22.7 | 20.4 | 21.0 | 21.6 | 22.8 | 20.9 | 21.8 | 18.6 |
24.3 | 20.5 | 19.7 | 23.5 | 21.6 | 19.8 | 20.3 | 22.4 | 20.2 | 22.3 |
21.9 | 22.3 | 21.4 | 19.2 | 23.5 | 20.5 | 22.1 | 22.7 | 23.2 | 21.7 |
21.1 | 23.1 | 23.4 | 23.3 | 21.0 | 24.1 | 18.5 | 21.5 | 24.4 | 22.6 |
21.0 | 20.0 | 20.7 | 21.5 | 19.8 | 19.1 | 19.1 | 22.4 |
|
|
请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.
3、制作适当的统计图表示下列数据.
(1)全世界受到威胁的动物种类数:
动物分类 | 哺乳类 | 鸟类 | 爬行类 | 两栖类 | 鱼类 | 无脊椎动物类 |
受到威胁的种类数 | 约1100 | 约1100 | 约300 | 约100 | 约700 | 约1900 |
(2)对某城市家庭人口数的一次统计结果表明:2口人家占,3口人家占,4口人家占,5口人家占,6口人家占,其他占.
(3)1949年以后我国历次人口普查情况:
年份 | 1953 | 1964 | 1982 | 1990 | 2000 | 2010 |
人口/亿 | 5.94 | 6.95 | 10.08 | 11.34 | 12.95 | 13.71 |
4、从1984年起,我国先后参加了第23至29届夏季奥运会,取得了骄人的成绩.
(1)查阅资料,了解我国在历届夏季奥运会金牌榜上的排名,以及所获金牌总数、奖牌总数、奖牌分布等情况;
(2)你能从查阅到的图表中得到哪些信息?你有什么感触?与同学进行交流.
5、为了了解某地区60~75岁的老年人的锻炼情况,利用公安机关户籍网,随机电话调查了该区60~75岁的300名老人平均每天的锻炼时间,整理得到下面的表格:
平均每天锻炼时间 | 人数 | 占被调查数的百分比 | ||
男 | 女 | 合计 | ||
1h以内(含1h) | 43 | 83 | 126 | 42% |
1-2h(含2h) | 20 | 28 | 48 | 16% |
2h以上 | 7 | 5 | 12 | 4% |
不参加锻炼 | 77 | 37 | 114 | 38% |
合计 | 147 | 153 | 300 | 100% |
(1)男性老年人参加锻炼的人数有________人,女性老年人参加锻炼的人数有________人,老年人中,参加锻炼的占被调查者的________%;
(2)不参加锻炼的老年人中,男性大约是女性的几倍?
(3)根据此表数据分析,你对该区老年人的锻炼情况有什么建议吗?
(4)对本题的课题进行调查时,如果清晨到公园或市人民广场询问300名老年人,或在某居民小区调查10名老年人,你认为这样得到的数据,可以作为调查分析、得出结论的依据吗?请说明理由.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意找出无理数的个数,用无理数的个数除以总数即可求得无理数出现的频率
【详解】
解:∵实数,,,,中,无理数有,,共3个,
∴无理数出现的频率是
故选C
【点睛】
本题考查了无理数,根据描述求频率,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.
2、C
【解析】
【分析】
根据题意中的“变化情况”直接选择折线统计图.
【详解】
为了记录一个病人的体温变化情况,
应选择的统计图是折线统计图,
故选C.
【点睛】
本题考查了条形统计图,扇形统计图,折线统计图,频数直方图的概念,根据实际选择合适的统计图,根据题意中的“变化情况”选择统计图是解题的关键.折线统计图用折线的起伏表示数据的增减变化情况不仅可以表示数量的多少,而且可以反映数据的增减变化情况.
3、C
【解析】
【详解】
解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;
B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;
C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;
D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;
故选:C.
【点睛】
本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.
4、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A.这100名七年级学生的一分钟跳绳成绩是总体的一个样本,故该选项不符合题意;
B、该市七年级学生的一分钟跳绳成绩是总体,故该选项不符合题意;
C、该市每位七年级学生的一分钟跳绳成绩是个体,故该选项符合题意;
D、样本容量是100,故该选项不符合题意;
故选:C.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
5、B
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是七年级800名学生期中数学考试情,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.
【详解】
解:A、题中的调查方式为抽样调查,选项正确,不符合题意;
B、总体为800名学生的期中数学成绩,而不是学生,选项错误,符合题意;
C、每名学生的期中数学成绩是个体,选项正确,不符合题意;
D、100名学生的期中数学成绩是总体的一个样本,选项正确,不符合题意;
故选B
【点睛】
本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.
6、C
【解析】
【分析】
根据题意,描述某病人某一天的体温变化情况最合适的应该反映变化趋势,则选取折线统计图,据此求解即可.
【详解】
解:∵护士为了描述某病人某一天的体温变化情况,
∴最合适的统计图是折线统计图
故选C
【点睛】
本题考查了根据实际选取合适的统计图,理解题意是解题的关键.条形统计图的特点:能清楚的表示出数量的多少;折线统计图的特点:不但可以表示出数量的多少,而且能看出各种数量的增减变化情况;扇形统计图比较清楚地反映出部分与部分、部分与整体之间的数量关系.
7、A
【解析】
【分析】
根据总体,样本,个体,样本容量的定义,即可得出结论.
【详解】
解:A.200名学生的视力是总体的一个样本,故本选项正确;
B.学生不是被考查对象,200名学生不是总体,总体是1200名学生的视力,故本选项错误;
C.学生不是被考查对象,200名学生不是总体的一个个体,个体是每名学生的视力,故本选项错误;
D.样本容量是1200,故本选项错误.
故选:A.
【点睛】
本题考查了对总体,样本,个体,样本容量的理解和运用,关键是能根据定义说出一个事件的总体,样本,个体,样本容量.
8、D
【解析】
【分析】
根据全面调查、抽样调查、样本和样本容量判断即可.
【详解】
A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查
.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;
B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;
C、∵全市中学生人数太多
,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;
D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,
故D正确;
故选:D
【点睛】
本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.
9、B
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,根据定义逐一分析即可.
【详解】
解:1000名考生的成绩是总体的一个样本;故①不符合题意;
55000名考生的成绩是总体;故②不符合题意;
样本容量是1000,描述正确,故③符合题意;
故选B
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
10、C
【解析】
【分析】
根据抽样调查和普查的特点,选择合适的调查方式.
【详解】
要了解某市百万居民的生活状况,采取抽样调查的方式,
∴A不符合题意;
要了解一批导弹的杀伤范围,采取抽样调查的方式,
∴B不符合题意;
要了解外地游客对旅游景点的满意程度,采用抽样调查
∴C符合题意;
要了解全国中学生的业余爱好,采取抽样调查的方式,
∴D不符合题意;
故选C.
【点睛】
本题考查了调查的两种方式,熟练掌握两种方式使用的基本特点是解题的关键.
二、填空题
1、0.15
【解析】
【分析】
求出40~50元的人数,再根据频率=频数÷总数进行计算即可.
【详解】
解:“40~50元”的人数为:200−10−30−50−80=30(人),
“40~50元”的频率为:30÷200=0.15,
故答案为:0.15.
【点睛】
本题考查频数分布直方图,掌握频率=频数÷总数是正确解答的关键.
2、480
【解析】
【分析】
用频数96除以频率0.2,即可求出被调查的学生人数.
【详解】
解:96÷0.2=480(人),
被调查的学生人数为480人,
故答案为:480.
【点睛】
本题考查频数与频率,解题的关键是正确理解频数与频率的关系.
3、25
【解析】
【分析】
先从统计图中读出这6次成绩的最高分与最低分,然后相减即可.
【详解】
解:根据折线统计图可知,这6次成绩分别是(单位:分):
65,75,60,80,70,85
其中,最高分是85分,最低分是60分,
所以,最高分与最低分的差是85-60=25(分).
故答案为:25.
【点睛】
本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
4、0.3
【解析】
【分析】
根据频数、总数与频率关系公式为,计算即可.
【详解】
解:∵成绩在80.5~90.5(分)这一组的频数是15,总数为50,
∴频率为:.
故答案为0.3.
【点睛】
本题考查频率的求法,掌握频数、总数与频率之间关系是解题关键.
5、120
【解析】
【分析】
由题意根据样本容量是样本中包含的个体的数目进行分析可得答案.
【详解】
解:本次调查的样本是被随机抽取的120名学生,所以样本容量是120.
故答案为:120.
【点睛】
本题主要考查样本容量,注意掌握样本容量只是个数字,没有单位.
三、解答题
1、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【解析】
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
2、见解析
【解析】
【分析】
先算出数据最大值与最小值之差,取组距进行分组即可得频数分布表,频数分布直方图;
【详解】
解:计算最大值与最小值的差:
数据的最小值是18.5t,最大值是24.4t,(t),
决定组距与组数:
取组距为1t,则分成6组,
设每星期销售面粉xt,则可分为:
,,,
,,
频数分布表:
销售量 | 划记 | 频数 |
正一 | 6 | |
正丅 | 7 | |
正 | 9 | |
正正丅 | 12 | |
正 | 8 | |
正一 | 6 | |
合计 |
| 48 |
频数分布直方图:
∵这组数据的中位数在,
∴这批面粉批发商每星期进22吨面粉比较合适.
【点睛】
本题考查了频数分布表,频数分布直方图,解题的关键是将熟练掌握绘制频数分布表的方法.
3、(1)条形统计图;见解析;(2)扇形统计图;见解析;(3)折线统计图或条形统计图,作一个即可,见解析.
【解析】
【分析】
各统计图特点如下:条形统计图能清楚地表示出每个项目的具体数据;折线统计图能清楚地反映事物的变化情况;扇形统计图能清楚地表示出各部分在总体中所占的百分比,由各小题的数据结合统计图的特点选择合适的统计图即可
【详解】
解:(1)选择条形统计图,如下图所示:
(2)选择扇形统计图,如下图所示:
(3)选择条形统计图或折线统计图,作一个即可,如下图所示:
【点睛】
本题主要考查统计图,属于基础题,能根据已知条件选择适当的统计图,并能正确地作出统计图是解题关键
4、(1)见解析;(2)见解析
【解析】
【分析】
(1)根据题意查阅资料并记录即可;
(2)根据统计图逐个分析即可.
【详解】
解:(1)答案不唯一.查阅资料,可以得到很多相关图表.例如:
我国在第23至29届奥运会金牌榜上的排名
届数 | 排名 |
第23届(1984,洛杉矶) | 4 |
第24届(1988,汉城) | 11 |
第25届(1992,巴塞罗那) | 4 |
第26届(1996,亚特兰大) | 4 |
第27届(2000,悉尼) | 3 |
第28届(2004,雅典) | 2 |
第29届(2008,北京) | 1 |
(2)答案不唯一.例如,表格说明我国体育在世界的排名逐步提高;折线图说明历届奥运会我国获得的金牌数(除第24届外)都在提高,且近三届提高幅度较大;条形图反映出历届奥运会我国获得的奖牌数(除第24届外)都在提高,特别是第29届北京奥运会提高幅度较大;扇形图则反映了北京奥运会上获得奖牌的分布情况,其中金牌占的份额最大.
【点睛】
此题考查了统计表、条形统计图、折线统计图以及扇形统计图的应用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
5、(1)70,116,62;(2)2倍;(3)要增强该地区老年人“生命在于运动”的观念;(4)不可以,理由见解析
【解析】
【分析】
(1)观察表格可得出男性老年人和女性老年人参加锻炼的人数,由此进行解答;
(2)由表格可知不参加锻炼的老年人中,其中男性有77人,女性有37人,进而可得到男性人数和女性人数的倍数关系;
(3)此题答案不唯一,根据图表分析参加锻炼的人数不太多,可以就注重锻炼来分析;
(4)可以根据抽样调查中样本的代表性进行解答.
【详解】
解: (1)男性老年人参加锻炼的人数有43+20+7=70(人),女性参加锻炼的人数有83+28+5=116(人);老年人中,参加锻炼的占被调查者的.
(2)不参加锻炼的老年人中,其中男性有77人,女性有37人,故男性大约是女性的2倍.
(3)根据此表数据分析:不参加锻炼的老年人约占38%,可见该地区的老年人锻炼意识不强,尤其是男性老年人,只有半数的男性老年人参加锻炼,所以要增强该地区老年人“生命在于运动”的观念.
(4)不可以,因为,清晨到公园或市民广场的老年人都是注意锻炼的老年人,不能代表该区所有的老年入的锻炼情况,不具有广泛的代表性,即样本不具有代表性、广泛性,故这种调查方法得出的结论不符合实际.
【点睛】
本题考查抽样调查的知识,解题的关键是对表格进行正确分析进而得到答案.
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课时训练: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课时训练,共23页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。
冀教版八年级下册第十八章 数据的收集与整理综合与测试课时练习: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试课时练习,共22页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。
初中冀教版第十八章 数据的收集与整理综合与测试复习练习题: 这是一份初中冀教版第十八章 数据的收集与整理综合与测试复习练习题,共22页。试卷主要包含了下列调查方式中,不合适的是,下列适合于抽样调查的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。