冀教版八年级下册第十八章 数据的收集与整理综合与测试课时练习
展开八年级数学下册第十八章数据的收集与整理章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的是( )
A.对“神舟十三号载人飞船”零部件的检查,采用抽样调查的方式
B.为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生是所抽取的一个样本
C.为了了解全市中学生的睡眠情况,应该采用普查的方式
D.为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200
2、能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制( )
A.条形统计图 B.扇形统计图 C.折线统计图 D.直方图
3、下列调查方式中,适合用普查方式的是( )
A.对某市学生课外作业时间的调查 B.对神州十三号载人航天飞船的零部件进行调查
C.对某工厂生产的灯泡寿命的调查 D.对某市空气质量的调查
4、某校为了解全校1000名学生的视力情况,抽查了200名学生的视力进行统计分析.在这个问题中,下列说法:①这1000多学生的视力的全体是总体;②每名学生是个体;③200名学生是总体的一个样本;④样本容量是200.其中说法正确的有( )
A.①②③④ B.①②④ C.①③④ D.①④
5、为了交接某校2000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )
A.2000名学生的数学成绩 B.2000
C.被抽取的50名学生的数学成绩 D.50
6、紧跟2006年第十八届世界杯足球赛的步伐,师大学生也举行了足球比赛,下表是师范大学四个系举行足球单循环赛的成绩:
球队 成绩 球队 | 数学 | 中文 | 教育 | 化学 |
数学 | × | 0:1② | 3:2 | 0:0 |
中文 | 1:0① | × | 1:1 | 3:0 |
教育 | 2:3 | 1:1 | × | 4:1 |
化学 | 0:0 | 0:3 | 1:4 | × |
表中成绩栏中的比为行中所有球队比赛的进球之比.如①表示中文系与数学系的比赛中,中文系以1:0获胜;②表示与①同一场比赛,数学系输给了中文系.按规定,胜一场得3分,平一场得1分,负一场得0分,按得分由多到少排名次,则此次比赛的冠军队是( ).
A.数学系 B.中文系 C.教育系 D.化学系
7、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
8、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )
A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.4
9、下列调查中,最适合采用全面调查(普查)方式的是( )
A.检测生产的鞋底能承受的弯折次数
B.了解某批扫地机器人平均使用时长
C.选出短跑最快的学生参加全市比赛
D.了解某省初一学生周体育锻炼时长
10、如图为成都市部分区县森林覆盖率统计图.其中,森林覆盖率低于的区县有( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的统计图是___统计图.(填“条形”、“扇形”或“折线”)
2、2021年12月02日是“世界完全对称日”,人们在数字“20211202”中感受到了对称之美,下一个“世界完全对称日”将是2030年03月02日.在数字“20211202”中,数字“2”出现的频率是______.
3、为了解某学校“书香校园”的建设情况,这个学校共有300名学生,检查组在该校随机抽取50名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数直方图(每小组的时间值包含最小值,不包含最大值),若要根据图中信息绘制每组人数的扇形统计图,一周课外阅读时间不少于6小时的这部分扇形的圆心角是____°.
4、下图分别用条形统计图和扇形统计图表示七年级学生的出行方式,根据条形统计图和扇形统计图,表示骑自行车的扇形的圆心角的度数为________.
5、学校的全体学生的爱好情况是我们要考察的_______,称为总体;每个学生的爱好情况称为_______;所抽取的学生的爱好情况称为_______.
三、解答题(5小题,每小题10分,共计50分)
1、某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.
第一组 | A | B | C | D | E | 获胜场数 | 总积分 |
A |
| 2:1 | 2:0 | 1:2 | 2:0 | x | 13 |
B | 1:2 |
| m | 0:2 | 1:2 | 0 | y |
C | 0:2 | n |
| 1:2 | 2:1 | 2 | p |
D | 2:1 | 2:0 | 2:1 |
| 1:2 | 3 | 12 |
E | 0:2 | 2:1 | 1:2 | 2:1 |
| 2 | 9 |
根据上表回答下列问题:
(1)第一组一共进行了 场比赛,A队的获胜场数x为 ;
(2)当B队的总积分y=6时,上表中m处应填 ,n处应填 ;
(3)写出C队总积分p的所有可能值为: .
2、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:
(1)木次调查的学生共有 人,扇形统计图中∠α的度数是 ;
(2)请把条形统计图补充完整.
3、为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
(1)学校这次调查共抽取了多少名学生?
(2)请通过计算补充条形统计图;
(3)若该校共有学生2000名,请你估计该校有多少名学生喜欢书法?
4、某市教育局在全市党员教职工中开展的“学党史,知党情,颂党恩”活动中,进行了论文的评比,论文的交稿时间为6月1日至25日,评委会把各校交的论文的篇数按4天一组分组统计,绘制成如图所示的频数分布直方图(每组包括左端点,不包括右端点)已知从左往右各小长方形的高的比为2:3:4:6:4:1,第二组的频数为18.请回答下列问题.
(1)本次活动共有多少篇论文参加评比?
(2)哪组上交的论文数量最多?是多少?
(3)经过评比,第四组和第六组分别有20篇、4篇论文获奖,则这两组哪组获奖率高?
5、中秋节是中国四大传统节日之一,中秋文化在世界上影响广泛,吃月饼是中秋节的一项重要习俗.下面图表是华联超市中秋节当天所销售月饼的一些信息,请根据图表中信息解答下面的问题.
| 单价/元 | 数量/个 | 总价/元 |
A品牌 |
| 400 |
|
B品牌 |
| 600 |
|
C品牌 | 2.5 |
|
|
合计 | —— | —— | 4900 |
(1)C品牌月饼一共卖了 个,总价是 元.
(2)A品牌月饼单价是B品牌月饼单价的,A、B品牌的月饼单价各多少元?
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据全面调查、抽样调查、样本和样本容量判断即可.
【详解】
A、∵为了安全,对“神舟十三号载人飞船”零部件的检查必须逐个检查
.对“神舟十三号载人飞船”零部件的检查,不能采用抽样调查的方式,应该采用普查的方式,故A错误;
B、根据样本的定义可知:为了解某市20000名学生的身高情况,从中抽取了1000名学生的身高信息,其中1000名学生的身高信息是所抽取的一个样本,故B错误;
C、∵全市中学生人数太多
,为了了解全市中学生的睡眠情况,不应该采用普查的方式,应该采用抽样调查的方式,故C错误;
D、根据样本容量的定义可知:“为检验一批电话手表的质量,从中随机抽取了200枚,则样本容量是200”是正确的,
故D正确;
故选:D
【点睛】
本题考查简单随机抽样,样本和样本容量等相关概念,掌握相关的概念是解答此题的关键.
2、C
【解析】
【分析】
根据统计图的特点解答.
【详解】
解:能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制折线统计图,
故选:C.
【点睛】
此题考查了统计图的特点,条形统计图能够直观地反映各变量数量的差异,折线图能直观反映各变量的变化趋势,扇形统计图能清楚地表示各部分在总体中所占的百分比,直方图体现个体的数量,熟记每种统计图的特点是解题的关键.
3、B
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A.对某市学生课外作业时间的调查工作量比较大,宜采用抽样调查;
B.对神州十三号载人航天飞船的零部件进行调查非常重要,宜采用普查;
C.对某工厂生产的灯泡寿命的调查具有破坏性,宜采用抽样调查;
D.对某市空气质量的调查工作量非常大,宜采用抽样调查;
故选B.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、D
【解析】
【分析】
根据总体、个体、样本和样本容量的定义即可判断.
【详解】
这1000多学生的视力的全体是总体,故①正确;
每名学生的视力是个体;故②错误;
200名学生的视力是总体的一个样本,故③错误;
样本容量是200,故④正确.
故选:D.
【点睛】
本题考查抽样调查相关的概念,总体:考察对象的全体;个体:组成总体的每一个考察对象;样本:从总体中抽取的一部分个体;样本容量:样本中个体的数目,掌握总体、个体、样本和样本容量的定义是解决问题的关键.
5、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.
【详解】
解:A、2000名学生的数学成绩是总体,故选项不合题意;
B、2000是个体的数量,故选项不合题意;
C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;
D、50是样本容量,故选项不合题意;
故选C
【点睛】
本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围.样本容量只是个数字,没有单位.
6、B
【解析】
【分析】
分别求出中文系,数学系,化学系,教育系的得分,就可以解决.
【详解】
解:∵一共有四只球队参加比赛
∴每支球队只参加3场比赛
分别求出4支队伍的得分:中文:3+1+3=7,数学:0+3+1=4,教育:0+1+3=4,化学:1+0+0=1,
∴中文是冠军,
故选B.
【点睛】
此题主要考查了利用表格获取正确的信息,以及解决实际生活问题,题目比较新颖.
7、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
8、B
【解析】
【分析】
根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.
【详解】
解:小明进球的频率是30÷50=0.6,
故选:B.
【点睛】
此题主要考查了频率,关键是掌握计算方法.
9、C
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、检测生产的鞋底能承受的弯折次数,具有破坏性,适合采用抽样调查;
B、了解某批扫地机器人平均使用时长,具有破坏性,适合采用抽样调查;
C、选出短跑最快的学生参加全市比赛,精确度要求高,适合采用全面调查;
D、了解某省初一学生周体育锻炼时长,调查数量较大且调查结果要求准确度不高,适合采用抽样调查;
故选:C.
【点睛】
本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、B
【解析】
【分析】
根据直方图即可求解.
【详解】
由图可得森林覆盖率低于的区县有新津县、青白江,共2个
故选B.
【点睛】
此题主要考查统计图的判断,解题的关键是根据直方图找到森林覆盖率低于的区县,进而求解.
二、填空题
1、折线
【解析】
【分析】
根据条形统计图,折线统计图和扇形统计图的特点进行判断即可.
【详解】
解:想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的的统计图的折线统计图,
故答案为:折线.
【点睛】
本题主要考查了条形统计图,折线统计图和扇形统计图的特点,解题的关键在于能够熟练掌握:扇形统计图表示的是部分在总体中所占的百分比,但一般不能够从图中得到具体的数据;折线统计图表示的事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
2、##0.5
【解析】
【分析】
根据数字“20211202”中,数字“2”出现了4次,即可求数字“2”出现的频率.
【详解】
解:在数字“20211202”中,数字“2”出现了4次,
∴数字“2”出现的频率==.
故答案为:.
【点睛】
此题考查了频率,掌握频率=频数÷样本容量是解答此题的关键.
3、43.2
【解析】
【分析】
先求出阅读时间不少于6小时的人数,再根据公式计算即可.
【详解】
解:阅读时间不少于6小时的频数为50-7-13-24=6,
∴一周课外阅读时间不少于6小时的这部分扇形的圆心角是43.2°,
故答案为:43.2.
【点睛】
此题考查了求部分的圆心角度数,正确计算某组的频数及掌握圆心角度数的计算公式是解题的关键.
4、108°
【解析】
【分析】
先求统计的总人数,然后求出骑自行车的人数,再求出骑自行车的人数所占百分比为:,利用360°×30%计算即可.
【详解】
解:统计的人数为:60+90+150=300人,
骑自行车的人数为:90人,
骑自行车的人数所占百分比为:,
∴表示骑自行车的扇形的圆心角的度数为:360°×30%=108°.
故答案为:108°.
【点睛】
本题考查条形图获取信息,计算样本中百分比含量,扇形圆心角,掌握条形图获取信息,计算样本中百分比含量,扇形圆心角是解题关键.
5、 全体对象 个体 样本
【解析】
略
三、解答题
1、(1)10,3;(2)2:0;(3)9或10.
【解析】
【分析】
(1)利用公式即可求出比赛场次,根据比赛表格可得出A的获胜的场次即可
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,根据E的总分可得:a+ b+2c=9①,根据D的总得分可得b+2c+d=12②,根据A的总分可得:b+c+2d+=13③,解方程组,讨论整数解可得出a=1,b=2,c=3,d=4;设m对应的积分为x,当y=6时,b+x+a+b=6,即2+x+1+2=6,解方程即可;
(3)根据C队胜2场,分两种情况:当C、B的结果为2:0时,当C、B的结果为2:1时,分别把得分相加即可.
【详解】
解:(1)∵=10(场),
∴第一组一共进行了10场比赛;
∵每场比赛采用三局两胜制,A、B的结果为2:1,A获胜,A、C的结果为2:0,A获胜,A、E的结果为2:0,A获胜,A、D的结果为1:A负,
∴A队共获胜场3常,
∴ x=3,
故答案为:10,3;
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,
根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,
根据E的总分可得:a+ b+2c=9①,
根据D的总得分可得b+2c+d=12②,
根据A的总分可得:b+c+2d+=13③,
③-②得d-c=1,
∴d=c+1代入②得b+3c=11,
∴c=,
∴b=2,c=3,
∴d=c+1=4,
∴a=9-2-6=1,
∴a=1,b=2,c=3,d=4,
设m对应的积分为x,
当y=6时,b+x+a+b=6,即2+x+1+2=6,
∴x=1,
∴m处应填0:2;
∴B:C=0:2,
∴C:B=2:0,
∴n处应填2:0;
(3)∵C队胜2场,
∴分两种情况:当C、B的结果为2:0时,
p=a+d+c+b=1+4+3+2=10;
当C、B的结果为2:1时,
p=a+2c+b=1+3×2+2=9;
∴C队总积分p的所有可能值为9或10.
故答案为:9或10.
【点睛】
本题考查比赛应用题,表格信息的收集与处理,四元方程组的解法,列代数式求值,分类讨论思想应用,认真阅读题目,读懂题意,是解题关键.
2、(1);(2)画图见解析
【解析】
【分析】
(1)由B组8人,占比20%,列式可得总人数,由C组的占比乘以可得圆心角的度数;
(2)先计算出C组的人数,再补全图形即可.
【详解】
解:(1)由B组8人,占比20%,可得总人数为:人,
所以C组所在扇形的圆心角为:
故答案为:
(2)C组的人数为:人,
补全图形如下:
【点睛】
本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.
3、(1)学校这次调查共抽取了100名学生;(2)图形见解析;(3)估计该校有500名学生喜欢书法.
【解析】
【分析】
(1)用“戏曲”的人数除以其所占百分比可得;
(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;
(3)用总人数乘以样本中“书法”人数所占百分比可得.
【详解】
(1)学校本次调查的学生人数为:
10÷ 10%= 100名,
答:学校这次调查共抽取了100名学生;
(2)“民乐”的人数为100×20%= 20人,
补全图形如下:
(3)估计该校喜欢书法的学生人数为:
2000×25%= 500名,
答:估计该校有500名学生喜欢书法.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
4、(1)本次活动共有120篇论文参加评比;(2)计算可知第四组上交的论文数量最多,有36篇;(3)第六组的获奖率较高
【解析】
【分析】
(1)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,又知第二组的频数为18,则总篇数==第二组的频数÷第二组的频率;
(2)由图可以看出第四组的频率组大,则第四组的论文数量最多;
(3)第四组的论文的频数=120×0.3=36篇,第六组的论文的频数=120×0.05=6篇;则第四组的获奖率=20÷36=56%,第六组的获奖率为4÷6=67%;则第六组的获奖率较高.
【详解】
解:(1)第二组的频率是=0.15
总篇数是18÷0.15=120(篇),
则本次活动共有120篇论文参加评比.
(2)由题意可知:从左至右各长方形的高的比为2:3:4:6:4:1,则从左到右的各组的频率为0.1、0.15、0.2、0.3、0.2、0.05,第四组的论文的频数=120×0.3=36篇,
则计算可知第四组上交的论文数量最多,有36篇.
(3)第六组的论文的频数=120×0.05=6篇;
第四组的获奖率=20÷36×100%≈56%,第六组的获奖率为4÷6≈67%;
56%<67%,
则第六组的获奖率较高.
【点睛】
本题考查频率的分布直方图,能从图表中提取有用的信息是解题的关键.
5、(1)1000,2500;(2)A品牌月饼的单价是1.5元,B品牌月饼的单价是3元.
【解析】
【分析】
(1)把超市三种月饼总销售量看作单位“1”,其中A品牌的占20%,求出三种月饼的总数是多少个,C品牌占50%,用总数乘50%就是C品牌的个数,最后根据总价=单价×数量求出C品牌的总价;
(2)由A品牌月饼的单价是B品牌粽子的,设B品牌月饼的单价为x元,则A品牌月饼的单价为x元,然后根据总价=单价×数量,列方程解答后,即可求出各自的单价.
【详解】
解:(1)400÷20%=2000(个),
2000×50%=1000(个),
1000×2.5=2500(元),
所以,C品牌月饼一共卖了1000个,总价是2500元.
故答案为:1000,2500.
(2)设B品牌月饼的单价为x元,则A品牌月饼的单价为x元,由题意得:
600x+400×x=4900-2500
解得x=3,
3×=1.5(元).
所以,A品牌月饼的单价是1.5元,B品牌月饼的单价是3元.
【点睛】
此题考查了理解掌握扇形统计图的特点及作用,并且能够根据统计图提供的信息解决有关的实际问题。
八年级下册第十八章 数据的收集与整理综合与测试练习: 这是一份八年级下册第十八章 数据的收集与整理综合与测试练习,共21页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
冀教版八年级下册第十八章 数据的收集与整理综合与测试达标测试: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试达标测试,共22页。试卷主要包含了下列做法正确的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
冀教版八年级下册第十八章 数据的收集与整理综合与测试测试题: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试测试题,共21页。试卷主要包含了下列调查方式中,合适的是,下列调查中适合普查的是等内容,欢迎下载使用。