冀教版八年级下册第十八章 数据的收集与整理综合与测试课时作业
展开八年级数学下册第十八章数据的收集与整理同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、2021年3月12日北京市统计局发布了《北京市2020年国民经济和社会发展统计公报》,其中列举了2020年北京市居民人均可支配收入.如图是小明同学根据年北京市居民人均可支配收入绘制的统计图.
根据统计图提供的信息,下面四个判断中不合理的是( )
A.2020年北京市居民人均可支配收入比2016年增加了16904元
B.年北京市居民人均可支配收入逐年增长
C.2017年北京市居民人均可支配收入的增长率约为
D.年北京市居民人均可支配收入增长幅度最大的年份是2018年
2、下列调查中,调查方式选择合理的是 ( )
A.为了了解澧水河流域饮用水矿物质含量的情况,采用抽样调查方式
B.为了保证长征运载火箭的成功发射,对其所有的零部件采用抽样调查方式
C.为了了解天门山景区的每天的游客客流量,选择全面调查方式
D.为了调查湖南卫视《快乐大本营》节目的收视率,采用全面调查方式
3、下列调查中,最适合采用普查方式的是( )
A.调查某品牌电视的使用寿命 B.调查毕节市元旦当天进出主城区的车流量
C.调查我校七(1)班新冠核酸检查结果 D.调查某批次烟花爆竹的燃放效果
4、根据下面的两幅统计图,你认为哪种说法不合理( )
A.六(2)班女生人数一定比六(1)班多 B.两个班女生人数可能同样多
C.六(2)班女生人数可能比六(1)班多 D.六(2)班女生人数一定比男生多
5、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
6、下列说法中正确的个数是( )个.
①a表示负数;
②若|x|=x,则x为正数;
③单项式的系数是;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4;
⑤了解全市中小学生每天的零花钱适合抽样调查;
⑥调查七年级(1)班学生的某次数学考试成绩适合抽样调查.
A.1 B.2 C.3 D.4
7、下列调查中,适合用普查方式的是( )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
8、下列调查中,其中适合采用抽样调查的是( )
A.调查某班50名同学的视力情况
B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况
C.为保证“神舟9号”成功发射,对其零部件进行检查
D.检测中卫市的空气质量
9、在3.14159,,1.1010010001…,π, 中,无理数出现的频率是( )
A.0.2 B.0.4 C.0.6 D.0.8
10、下列调查最适合用普查的是( )
A.了解七年级1班每位学生身高情况 B.检测一款新手机的待机时长
C.了解全国中学生最喜爱的图书种类 D.调查全市人民对政府服务的满意程度
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图所示是小明一天24小时的作息时间分配的扇形统计图,那么他的阅读时间是________小时.
2、为完成下列任务,你认为用什么调查方式更合适?(选填“全面调查”或“抽样调查”)
(1)了解一批圆珠笔芯的使用寿命________.
(2)了解全班同学周末时间是如何安排的________.
(3)了解我国八年级学生的视力情况________.
(4)了解中央电视台春节联欢晚会的收视率________.
(5)了解集贸市场出售的蔬菜中农药的残留情况________.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况________.
3、为了解中学生获取资讯的主要渠道,设置“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(必选且只能选一项),随机抽取50名中学生进行问卷调查,根据调查结果绘制条形图如图该调查的方式是________,图中的值是________.
4、某调查小组就400名学生对小品的喜欢程度进行了调查,并将调查结果用条形统计图进行表示.已知条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为,那么将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的圆心角的度数是________.
5、年末,我国完成了第次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)
三、解答题(5小题,每小题10分,共计50分)
1、第31届世界大学生夏季运动会定于2022年6月26日至7月7日举办,为了了解成都市锦江区中学生对大运会的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,调查组绘制了如图两幅不完整的统计图。请根据图中提供的信息,解答下列问题:
(1)填空:这次被调查的同学共有________人,其中“不太了解”的有________人;
(2)根据图中数据,求扇形统计图中类别为“不太了解”的学生数所对应的扇形圆心角度数;
(3)我区七年级大约有20000名学生,请估计“理解”的学生有多少名?
2、某班男女生人数比例如图(1)所示,如果用图(2)的正方形表示该班全体人数,你能在图(2)中直观地表示该班男女生人数的比例关系吗?
3、某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)
根据统计图中的信息完成下列问题:
(1)本次随机调查了 名学生;
(2)扇形统计图中的a= ;
(3)对于“参加公益活动为6天”的扇形,对应的圆心角为 度.
4、中国男子国家足球队冲击2010年南非世界杯失利后,某新闻机构就中国足球环境问题随机调查了400人,其结果如下:
意见 | 非常不满意 | 不满意 | 有一点满意 | 满意 |
人数 | 200 | 160 | 32 | 8 |
百分比 |
|
|
|
|
(1)计算出每一种意见人数占总调查人数的百分比(填在以上空格中);
(2)请画出反映此调查结果的扇形统计图;
(3)从统计图中你能得出什么结论?说说你的理由.
5、为了了解某地区60~75岁的老年人的锻炼情况,利用公安机关户籍网,随机电话调查了该区60~75岁的300名老人平均每天的锻炼时间,整理得到下面的表格:
平均每天锻炼时间 | 人数 | 占被调查数的百分比 | ||
男 | 女 | 合计 | ||
1h以内(含1h) | 43 | 83 | 126 | 42% |
1-2h(含2h) | 20 | 28 | 48 | 16% |
2h以上 | 7 | 5 | 12 | 4% |
不参加锻炼 | 77 | 37 | 114 | 38% |
合计 | 147 | 153 | 300 | 100% |
(1)男性老年人参加锻炼的人数有________人,女性老年人参加锻炼的人数有________人,老年人中,参加锻炼的占被调查者的________%;
(2)不参加锻炼的老年人中,男性大约是女性的几倍?
(3)根据此表数据分析,你对该区老年人的锻炼情况有什么建议吗?
(4)对本题的课题进行调查时,如果清晨到公园或市人民广场询问300名老年人,或在某居民小区调查10名老年人,你认为这样得到的数据,可以作为调查分析、得出结论的依据吗?请说明理由.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据表格数据分别求得2020年比2016年的增长量,即可判断A,根据条形统计图直接可判断B选项,根据2016,2017年的人均可支配收入即可求得2017年北京市居民人均可支配收入的增长率,从而判断C,根据每年的增长量即可判断D选项.
【详解】
A、2020年北京市居民人均可支配收入比2016年增加了元,正确,故本选项不合题意;
B、年北京市居民人均可支配收入逐年增长,正确,故本选项不合题意;
C、2017年北京市居民人均可支配收入的增长率,正确,故本选项不合题意;
D、69434-67756=1678,67756-62361=5395,62361-57230=5131,57230-52530=4700,则年北京市居民人均可支配收入增长幅度最大的年份是2019年,故本选项合题意;
故选:D.
【点睛】
本题考查了条形统计图,从条形统计图获取信息是解题的关键.
2、A
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查所费人力、物力和时间较少,但只能得出近似的结果判断即可.
【详解】
A. 为了了解澧水河流域饮用水矿物质含量的情况,适合采用抽样调查方式,符合题意;
B. 为了保证长征运载火箭的成功发射,对其所有的零部件适合采用全面调查方式,该选项不符合题意;
C. 为了了解天门山景区的每天的游客客流量,适合选择抽样调查方式,该选项不符合题意;
D. 为了调查湖南卫视《快乐大本营》节目的收视率,适合选择抽样调查方式,该选项不符合题意.
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、C
【解析】
【分析】
根据抽样调查与普查的适用范围进行判断即可.
【详解】
解:A、D中为出售的产品,适合抽样调查;不符合要求;
B中元旦的车流量较大,适合抽样调查;不符合要求;
C中新冠核酸检查关乎每个人的身心健康,适合普查,符合要求;
故选C.
【点睛】
本题考查了抽样调查与普查.解题的关键在于区分二者的适用范围.
4、A
【解析】
【分析】
根据两个扇形统计图,只能得到两个班级男女生比例的大小,无法确定男生和女生的具体人数,由此即可得.
【详解】
解:∵两个班的人数不知道,
∴无法确定每个班的男生和女生的具体人数,
∴六(2)班女生人数一定比六(1)班多不合理,
故选:A.
【点睛】
题目主要考查从扇形统计图获取信息,理解题意,掌握扇形统计图表示的意义是解题关键.
5、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
6、B
【解析】
【分析】
直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可.
【详解】
解:①a表示一个正数、0或者负数,故原说法不正确;
②若|x|=x,则x为正数或0,故原说法不正确;
③单项式﹣的系数是﹣,故原说法不正确;
④多项式﹣3a2b+7a2b2﹣2ab﹣1的次数是4,故原说法正确;
⑤了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;
⑥调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确.
正确的个数为2个,
故选:B.
【点睛】
本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键.
7、D
【解析】
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
8、D
【解析】
【分析】
抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.
【详解】
A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;
B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;
C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;
D检查中卫市的空气质量,应采用抽样调查,故符合要求;
故选D.
【点睛】
本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.
9、B
【解析】
【分析】
先找出无理数的个数,再根据频率的计算公式即可得.
【详解】
解:因为,
所以无理数是和,共有2个,
所以在这5个数中,无理数出现的频率为,
故选:B.
【点睛】
本题考查了无理数、频率,熟练掌握频率的计算公式是解题关键.
10、A
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.
【详解】
A.了解七年级1班每位学生身高情况,适合全面调查,故本选项符合题意;
B.检测一款新手机的待机时长,适合抽样调查,故本选项不符合题意;
C.了解全国中学生最喜爱的图书种类,适合抽样调查,故本选项不符合题意;
D.调查全市人民对政府服务的满意程度,适合抽样调查,故本选项不符合题意.
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
二、填空题
1、1
【解析】
【分析】
先求“阅读”所占的圆心角,再用×24,即可得出结果.
【详解】
解:360o-(60o+30o+120o+135o)=15o,
×24=1(小时),
故答案为:1.
【点睛】
本题考查了扇形统计图的应用,能够求出“阅读”所占的圆心角是解决本题的关键.
2、 抽样调查 全面调查 抽样调查 抽样调查 抽样调查 全面调查
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
(1)了解一批圆珠笔芯的使用寿命,具有破坏性,故适合用抽样调查.
(2)了解全班同学周末时间是如何安排的,数量较小,故适合用全面调查.
(3)了解我国八年级学生的视力情况,数量较大,故适合用抽样调查.
(4)了解中央电视台春节联欢晚会的收视率,数量较大,故适合用抽样调查.
(5)了解集贸市场出售的蔬菜中农药的残留情况,具有破坏性,故适合用抽样调查.
(6)了解里约奥运会100米决赛参赛运动员兴奋剂的使用情况,数量较小,准确度要求高,故适合用全面调查.
故答案为:抽样调查,全面调查,抽样调查,抽样调查,抽样调查,全面调查
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
3、 抽样调查 24
【解析】
【分析】
根据 “随机抽取50名中学生进行该问卷调查”可得该调查方式是抽样调查,根据调查的样本容量为50列出方程6+10+8+a+12=50,解方程即可.
【详解】
解:由题意知,该调查方式是抽样调查,
由样本容量为50可知:6+10+6+a+4=50,
解得a=24,
故答案为:抽样调查;24.
【点睛】
此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
4、
【解析】
【分析】
根据条形图中长方形的面积比求得各个量的比值为6:9:2:1,再求扇形的圆心角度数.
【详解】
解:∵条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为6:9:2:1,
∴将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的圆心角的度数是×360°=20°,
故答案为:.
【点睛】
扇形统计图中,所表示的量的扇形所占圆的面积的百分比是它在总量中所占的百分比.所以该量所表示的扇形的圆心角度数是360度×它在总量中所占的百分比.本题的解题关键是根据条形图中长方形的面积比求得各个量的比值.
5、全面调查
【解析】
【分析】
根据全面调查和抽样调查的概念判断即可.
【详解】
解:为了全面的、可靠的得到我国人口信息,
所以国家统计局采取的调查方式是全面调查,
故答案为:全面调查.
【点睛】
本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.
三、解答题
1、(1)400;100(2)90°(3)6000名
【解析】
【分析】
(1)根据“了解”的类型及占比即可求出调查的总人数,即可求出“不太了解”的人数;
(2)根据“不太了解”的人数及占比即可求解;
(3)根据“理解”的占比即可求解.
【详解】
(1)依题意可得这次被调查的同学共有160÷40%=400(人)
∴“不太了解”的有400-120-160-20=100(人)
故答案为:400;100;
(2)360°×=90°
答:扇形统计图中类别为“不太了解”的学生数所对应的扇形圆心角度数为90°.
(3)七年级大约有20000名学生,估计“理解”的学生的人数为20000×=600(名)
答:估计“理解”的学生有6000名.
【点睛】
此题主要考查统计调查的应用,解题的关键是根据题意求出调查的总人数.
2、见解析
【解析】
【分析】
根据扇形统计图的比例关系,在正方形中按比例画出男女生的比例即可.注意:一般情况下用圆和扇形代表总体和部分要比其他形式更加直观方便.
【详解】
如图所示
在扇形统计图中,是从圆的圆心出发,用乘该部分所占比例,得到角度后画扇形的;但在正方形的图中,若从正方形的中心出发,则不能用乘该部分所占比例,得到角度再分割正方形.
【点睛】
本题考查了扇形统计图,理解扇形统计图是解题的关键.
3、(1)100;(2)25;(3)54.
【解析】
【分析】
(1)根据4天的人数及百分比求出总人数即可;
(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;
(3)根据圆心角=360°×百分比计算即可.
【详解】
解:(1)本次随机调查的学生数是:30÷30%=100(名);
故答案为:100;
(2)7天的人数有:100×5%=5(名),
5天的人数有:100﹣10﹣15﹣30﹣15﹣5=25(名),
则扇形统计图中的a%=×100%=25%.即a=25;
故答案为:25;
(3)“参加公益活动为6天”的扇形,对应的圆心角为:360°×=54°;
故答案为:54.
【点睛】
本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.
4、(1)见解析;(2)见解析;(3)绝大部分人对中国足球环境问题不满意.
【解析】
【分析】
(1)由每个的人数除以总人数.再乘以100%,即可求得;
(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形图即可;
(3)扇形图能反映各种情况的百分比,根据扇形图即可得到答案.
【详解】
解:(1)∵×100%=50%,×100%=40%,×100%=8%,×100%=2%,
(2)∵50%×360°=180°,40%×360°=144°,8%×360°=28.8°,2%×360°=7.2°,
∴
(3)人民对国家足球队非常不满意的人数占到一半.绝大部分人对中国足球环境问题不满意.
【点睛】
此题考查了扇形统计图的作法与含义.解题的难点在扇形统计图的角度的求得上,要注意掌握方法.
5、(1)70,116,62;(2)2倍;(3)要增强该地区老年人“生命在于运动”的观念;(4)不可以,理由见解析
【解析】
【分析】
(1)观察表格可得出男性老年人和女性老年人参加锻炼的人数,由此进行解答;
(2)由表格可知不参加锻炼的老年人中,其中男性有77人,女性有37人,进而可得到男性人数和女性人数的倍数关系;
(3)此题答案不唯一,根据图表分析参加锻炼的人数不太多,可以就注重锻炼来分析;
(4)可以根据抽样调查中样本的代表性进行解答.
【详解】
解: (1)男性老年人参加锻炼的人数有43+20+7=70(人),女性参加锻炼的人数有83+28+5=116(人);老年人中,参加锻炼的占被调查者的.
(2)不参加锻炼的老年人中,其中男性有77人,女性有37人,故男性大约是女性的2倍.
(3)根据此表数据分析:不参加锻炼的老年人约占38%,可见该地区的老年人锻炼意识不强,尤其是男性老年人,只有半数的男性老年人参加锻炼,所以要增强该地区老年人“生命在于运动”的观念.
(4)不可以,因为,清晨到公园或市民广场的老年人都是注意锻炼的老年人,不能代表该区所有的老年入的锻炼情况,不具有广泛的代表性,即样本不具有代表性、广泛性,故这种调查方法得出的结论不符合实际.
【点睛】
本题考查抽样调查的知识,解题的关键是对表格进行正确分析进而得到答案.
数学八年级下册第十八章 数据的收集与整理综合与测试同步练习题: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试同步练习题,共19页。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试综合训练题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试综合训练题,共20页。试卷主要包含了下列适合于抽样调查的是,下列说法中等内容,欢迎下载使用。
冀教版八年级下册第十八章 数据的收集与整理综合与测试练习: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试练习,共22页。试卷主要包含了下列调查中,适合采用全面调查,下列调查中,适合用普查方式的是,以下调查中,适宜全面调查的是等内容,欢迎下载使用。