冀教版八年级下册第十八章 数据的收集与整理综合与测试练习
展开八年级数学下册第十八章数据的收集与整理专项测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
2、在3.14159,,1.1010010001…,π, 中,无理数出现的频率是( )
A.0.2 B.0.4 C.0.6 D.0.8
3、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
4、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
5、下列调查中,适合用普查方式的是( )
A.调查佛山市市民的吸烟情况
B.调查佛山市电视台某节目的收视率
C.调查佛山市市民家庭日常生活支出情况
D.调查佛山市某校某班学生对“文明佛山”的知晓率
6、某班学生在颁奖大会上得知该班获得奖励的情况如下表:
项目人数 级别 | 三好学生 | 优秀学生干部 | 优秀团员 |
市级 | 1 | 1 | 1 |
区级 | 3 | 2 | 2 |
校级 | 17 | 5 | 12 |
已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项 B.4项 C.5项 D.6项
7、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
8、某中学就周一早上学生到校的方式问题,对八年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率是( )
八年级学生人数 | 步行人数 | 骑车人数 | 乘公交车人数 | 其他方式人数 |
300 | 75 | 12 | 135 | 78 |
A.0.1 B.0.25 C.0.3 D.0.45
9、以下调查中,适宜全面调查的是( )
A.调查某批次汽车的抗撞击能力 B.调查某市居民日平均用水量
C.调查全国春节联欢晚会的收视率 D.调查某班学生的身高情况
10、2021年3月12日北京市统计局发布了《北京市2020年国民经济和社会发展统计公报》,其中列举了2020年北京市居民人均可支配收入.如图是小明同学根据年北京市居民人均可支配收入绘制的统计图.
根据统计图提供的信息,下面四个判断中不合理的是( )
A.2020年北京市居民人均可支配收入比2016年增加了16904元
B.年北京市居民人均可支配收入逐年增长
C.2017年北京市居民人均可支配收入的增长率约为
D.年北京市居民人均可支配收入增长幅度最大的年份是2018年
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、2021年4月25日-29日,福州举办第四届数字中国建设峰会,会务组要知道所有参会人员的体温状况,应采用的调查方式是__.(填“抽样调查”或“全面调查”)
2、圆周率π≈3.141592653589793,数字5出现的频数是____.
3、已知有50个数据分别落在五个小组内,落在第一、二、三、五小组内的数据个数分别为2,8,15,15,则落在第四小组内的频率是_____.
4、某中学举行一次演讲比赛,分段统计参赛同学的成绩,结果如下表(分数均为整数,满分为100分):请根据表中提供的信息,解答下列各题:
分数段(分) | 61-70 | 71-80 | 81-90 | 91-100 |
人数(人) | 丄 | 正上 | 正一 | 止 |
(1)参加这次演讲比赛的同学共有________人;
(2)已知成绩在91~100分的同学为优胜者,那么,优胜率为________.
5、用哪种统计图反映如下信息更合适?(选填“条形图”、“扇形图”或“折线图”)
(1)某学生从6岁到12岁每年一次体检的视力变化情况________.
(2)某班40名同学穿鞋的号码数________.
(3)北京市各区的占地面积与全市总面积的对比情况________.
(4)海淀区昨天一天的气温变化情况________.
(5)空气的组成成分________.
三、解答题(5小题,每小题10分,共计50分)
1、距离2022年中招体育考试的时间已经越来越近,某校初三年级为了了解本校学生在平时体育训练的效果,随机抽取了男、女各60名考生的体考成绩,并将数据进行整理分析,给出了下面部分信息:数据分为A,B,C,D四个等级分别是:A:48≤x≤50,B:45≤x<48,C:40≤x<45,:0≤x<40.
60名男生成绩的条形统计图以及60名女生成绩的扇形统计图如图:
男生成绩在B组的前10名考生的分数为:47,47.5,47.5,47,47,47,46,45.5,45,45
60名男生和60名女生成绩的平均数,中位数,众数如下:
性别 | 平均数 | 中位数 | 众数 |
男生 | 47.5 | a | 47 |
女生 | 48.5 | 47 | 47.5 |
根据以上信息,解答下列问题:
(1)填空:a=_____,b=______.
(2)补全条形统计图.
(3)根据以上数据,你认为在此次考试中,男生成绩好还是女生成绩好?请说明理由(说明一条理由即可).
(4)若该年级有800名学生请估计该年级所有参加体考的考生中,成绩为A等级的考生人数.
2、某班男女生人数比例如图(1)所示,如果用图(2)的正方形表示该班全体人数,你能在图(2)中直观地表示该班男女生人数的比例关系吗?
3、一位病人每天下午需要测量一次血压,下表是该病人星期一至星期五收缩压的变化情况,该病人上个星期日的收缩压为160单位.
星期 | 一 | 二 | 三 | 四 | 五 |
收缩压的变化 (与前一天比较) | 升30单位 | 降20单位 | 升17单位 | 升18单位 | 降20单位 |
(1)请算出星期五该病人的收缩压;
(2)请用折线统计图表示该病人这5天的收缩压情况.
4、某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.
第一组 | A | B | C | D | E | 获胜场数 | 总积分 |
A |
| 2:1 | 2:0 | 1:2 | 2:0 | x | 13 |
B | 1:2 |
| m | 0:2 | 1:2 | 0 | y |
C | 0:2 | n |
| 1:2 | 2:1 | 2 | p |
D | 2:1 | 2:0 | 2:1 |
| 1:2 | 3 | 12 |
E | 0:2 | 2:1 | 1:2 | 2:1 |
| 2 | 9 |
根据上表回答下列问题:
(1)第一组一共进行了 场比赛,A队的获胜场数x为 ;
(2)当B队的总积分y=6时,上表中m处应填 ,n处应填 ;
(3)写出C队总积分p的所有可能值为: .
5、在“迎新年,庆元旦”期间,某商场推出A、B、C、D四种不同类型礼盒共1000盒进行销售,在图1中是各类型礼盒所占数的百分比,已知四类礼盒一共已经销售了50%,各类礼盒的销售数量如图2所示:
(1)请将条形统计图补充完整;
(2)在扇形统计图中,C部分所对应的圆心角等于 度;
(3)你觉得哪一类礼盒销售最快,请说明理由.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.
2、B
【解析】
【分析】
先找出无理数的个数,再根据频率的计算公式即可得.
【详解】
解:因为,
所以无理数是和,共有2个,
所以在这5个数中,无理数出现的频率为,
故选:B.
【点睛】
本题考查了无理数、频率,熟练掌握频率的计算公式是解题关键.
3、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
4、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、D
【解析】
【分析】
根据普查和抽样调查的定义进行逐一判断即可.
【详解】
解:A、调查佛山市市民的吸烟情况,应采用抽样调查,故此选项不符合题意;
B、调查佛山市电视台某节目的收视率,应采用抽样调查,故此选项不符合题意;
C、调查佛山市市民家庭日常生活支出情况,应采用抽样调查,故此选项不符合题意;
D、调查佛山市某校某班学生对“文明佛山”的知晓率,应采用普查,故此选项符合题意;
故选D.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
6、C
【解析】
【分析】
根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数.
【详解】
解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:
项.
故选:C.
【点睛】
题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键.
7、B
【解析】
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
8、B
【解析】
【分析】
用步行到校学生的频数除以学生总数即可求解.
【详解】
解:75÷300=0.25,
故选B.
【点睛】
本题考查了频率的计算方法,熟练掌握频率=频数÷总数是解答本题的关键.
9、D
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查省时省力,但得到的调查结果比较近似即可解答.
【详解】
解:A. 调查某批次汽车的抗撞击能力,调查具有破坏性,适合抽样调查,故不合题意;
B. 调查某市居民日平均用水量,调查耗时耗力,适合抽样调查,故不合题意;
C. 调查全国春节联欢晚会的收视率调查耗时耗力,适合抽样调查,故不合题意;
D. 调查某班学生的身高情况,适合全面调查,故符合题意.
故选:D
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
10、D
【解析】
【分析】
根据表格数据分别求得2020年比2016年的增长量,即可判断A,根据条形统计图直接可判断B选项,根据2016,2017年的人均可支配收入即可求得2017年北京市居民人均可支配收入的增长率,从而判断C,根据每年的增长量即可判断D选项.
【详解】
A、2020年北京市居民人均可支配收入比2016年增加了元,正确,故本选项不合题意;
B、年北京市居民人均可支配收入逐年增长,正确,故本选项不合题意;
C、2017年北京市居民人均可支配收入的增长率,正确,故本选项不合题意;
D、69434-67756=1678,67756-62361=5395,62361-57230=5131,57230-52530=4700,则年北京市居民人均可支配收入增长幅度最大的年份是2019年,故本选项合题意;
故选:D.
【点睛】
本题考查了条形统计图,从条形统计图获取信息是解题的关键.
二、填空题
1、全面调查
【解析】
【分析】
根据事件的特点,结合全面调查特点即可确定调查方式.
【详解】
∵第四届数字中国建设峰会参会人员有限,疫情的需要,
∴选全面调查.
故答案为:全面调查
【点睛】
根据事件的特点,结合全面调查特征确定答案,做题的关键是弄清全面调查的优点以及局限性.
2、3
【解析】
【分析】
从数5出现的次数即可得出答案.
【详解】
在中,5出现了3次,
∴数字5出现的频数是3.
故答案为:3.
【点睛】
本题考查频数的定义:一组数据中,某数据出现的次数,掌握频数的定义是解题的关键.
3、0.4
【解析】
【分析】
先求出第四小组的频数,再根据频率=频数÷样本容量计算即可;
【详解】
由题可知:第四小组的频数,
频率=频数÷样本容量;
故答案是0.4.
【点睛】
本题主要考查了频率和频数的计算,准确分析计算是解题的关键.
4、 20 20%
【解析】
【分析】
(1)观察表格,求各段的人数的和即可;
(2)根据“优胜率=优胜的人数÷总人数×100%”进行计算即可.
【详解】
(1)参加这次演讲比赛的人数:2+8+6+4=20(人);
(2)成绩在91~100分的同学为优胜者,优胜率为:.
故答案为:20,20%.
【点睛】
本题考查了统计表,读懂统计表中的信息是解题的关键.
5、 折线图 条形图 扇形图 折线图 扇形图
【解析】
【分析】
根据统计图的特点,选用合适的统计图即可,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;折线统计图适合表示出变化情况.
【详解】
(1)某学生从6岁到12岁每年一次体检的视力变化情况,适合使用折线图;
(2)某班40名同学穿鞋的号码数,适合使用条形图.
(3)北京市各区的占地面积与全市总面积的对比情况,适合使用扇形图;
(4)海淀区昨天一天的气温变化情况,适合使用折线图;
(5)空气的组成成分,适合使用扇形图.
故答案为:折线图;条形图;扇形图;折线图;扇形图
【点睛】
本题考查了条形统计图,折线统计图,扇形统计图的特点,根据实际情况选用合适的统计图是解题的关键.
三、解答题
1、(1)46.5;30;(2)补全图形见解析;(3)女生的成绩较好;理由见解析;(4)320
【解析】
【分析】
(1)根据中位数的计算方法求出a即可,算出女生B组人数占比即可得到b;
(2)用总人数减去其他三组的人数即可得到男生B组的人数,补全图形即可;
(3)根据两组平均数的高低判断即可;
(4)用800乘以男女生A等生所占比即可;
【详解】
(1)男生成绩在B组的前10名考生的分数从大到小为:47.5,47.5,47,47,47,47,46,45.5,45,45;男生成绩在A组的人数和为24,男生成绩处在第30、31位的两个数的平均数为,
∴,
,
∴;
故答案是:46.5;30.
(2)男生B组有(人),补全图如图所示:
(3)女生的成绩较好;
理由:女生的平均数、众数都比男生好;
(4)(人);
【点睛】
本题主要考查了扇形统计图、条形统计图、中位数计算、众数计算,准确分析判断是解题的关键.
2、见解析
【解析】
【分析】
根据扇形统计图的比例关系,在正方形中按比例画出男女生的比例即可.注意:一般情况下用圆和扇形代表总体和部分要比其他形式更加直观方便.
【详解】
如图所示
在扇形统计图中,是从圆的圆心出发,用乘该部分所占比例,得到角度后画扇形的;但在正方形的图中,若从正方形的中心出发,则不能用乘该部分所占比例,得到角度再分割正方形.
【点睛】
本题考查了扇形统计图,理解扇形统计图是解题的关键.
3、(1)185单位;(2)见解析
【解析】
【分析】
(1)根据上个星期日的收缩压为160单位和每天收缩压的变化情况求解即可;
(2)以160单位为0点,根据表格中每天收缩压的变化情况在折线统计图中表示即可.
【详解】
解:(1)160+30-20+17+18-20=185单位;
(2)可以以160单位为0点,得到下图.
【点睛】
此题考查了有理数的加减混合运算的应用和折线统计图的表示方法,解题的关键是根据题意列出算式.
4、(1)10,3;(2)2:0;(3)9或10.
【解析】
【分析】
(1)利用公式即可求出比赛场次,根据比赛表格可得出A的获胜的场次即可
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,根据E的总分可得:a+ b+2c=9①,根据D的总得分可得b+2c+d=12②,根据A的总分可得:b+c+2d+=13③,解方程组,讨论整数解可得出a=1,b=2,c=3,d=4;设m对应的积分为x,当y=6时,b+x+a+b=6,即2+x+1+2=6,解方程即可;
(3)根据C队胜2场,分两种情况:当C、B的结果为2:0时,当C、B的结果为2:1时,分别把得分相加即可.
【详解】
解:(1)∵=10(场),
∴第一组一共进行了10场比赛;
∵每场比赛采用三局两胜制,A、B的结果为2:1,A获胜,A、C的结果为2:0,A获胜,A、E的结果为2:0,A获胜,A、D的结果为1:A负,
∴A队共获胜场3常,
∴ x=3,
故答案为:10,3;
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,
根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,
根据E的总分可得:a+ b+2c=9①,
根据D的总得分可得b+2c+d=12②,
根据A的总分可得:b+c+2d+=13③,
③-②得d-c=1,
∴d=c+1代入②得b+3c=11,
∴c=,
∴b=2,c=3,
∴d=c+1=4,
∴a=9-2-6=1,
∴a=1,b=2,c=3,d=4,
设m对应的积分为x,
当y=6时,b+x+a+b=6,即2+x+1+2=6,
∴x=1,
∴m处应填0:2;
∴B:C=0:2,
∴C:B=2:0,
∴n处应填2:0;
(3)∵C队胜2场,
∴分两种情况:当C、B的结果为2:0时,
p=a+d+c+b=1+4+3+2=10;
当C、B的结果为2:1时,
p=a+2c+b=1+3×2+2=9;
∴C队总积分p的所有可能值为9或10.
故答案为:9或10.
【点睛】
本题考查比赛应用题,表格信息的收集与处理,四元方程组的解法,列代数式求值,分类讨论思想应用,认真阅读题目,读懂题意,是解题关键.
5、(1)见解析;(2)72;(3)A类礼盒销售最快,理由见解析
【解析】
【分析】
(1)求出销售的C类礼盒的数量,即可补全条形统计图;
(2)C类礼盒相应圆心角的度数为360°乘以所占的百分比即可;
(3)比较四类礼盒销售的数量即可得出答案.
【详解】
解:(1)1000×50%-168-80-150=102(盒),补全条形统计图如图所示:
(2)360°×(1-35%-25%-20%)=72°,
故答案为:72;
(3)在相同的时间内,A类礼盒共销售168盒,B类礼盒共销售80盒,C类礼盒共销售102盒,A类礼盒共销售150盒,
因此,A类礼盒销售最快.
【点睛】
本题考查条形统计图、扇形统计图,理解统计图中各个数量之间的关系是解决问题的关键.
数学八年级下册第十八章 数据的收集与整理综合与测试综合训练题: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试综合训练题,共19页。试卷主要包含了下列适合于抽样调查的是,下列调查中,调查方式合适的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试一课一练: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试一课一练,共18页。试卷主要包含了下列做法正确的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评,共21页。试卷主要包含了下列调查中,适合采用全面调查,某校九年级,下列问题中,适合抽样调查的是等内容,欢迎下载使用。