初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评
展开八年级数学下册第十八章数据的收集与整理综合测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某校为了了解七年级800名学生期中数学考试情况,从中抽取了100名学生的期中数学成绩进行了统计,下面判断中不正确的有( )
A.这种调查的方式是抽样调查 B.800名学生是总体
C.每名学生的期中数学成绩是个体 D.100名学生的期中数学成绩是总体的一个样本
2、小明同学统计了某学校八年级部分同学每天阅读图书的时间,并绘制了统计图,如图所示.下面有四个推断:
①小明此次一共调查了100位同学;
②每天阅读图书时间不足15分钟的同学人数多于45﹣60分钟的人数;
③每天阅读图书时间在15﹣30分钟的人数最多;
④每天阅读图书时间超过30分钟的同学人数是调查总人数的20%.
根据图中信息,上述说法中正确的是( )
A.①③ B.①④ C.②③ D.②④
3、下列调查中,不适合采用普查方式的是( )
A.学校招聘教师,对应聘人员的面试
B.对进入地铁站的旅客携带物品的安检
C.鞋厂检查生产鞋底能承受的弯折次数
D.调查我校七年级全体学生的入学数学成绩
4、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
5、根据下面的两幅统计图,你认为哪种说法不合理( )
A.六(2)班女生人数一定比六(1)班多 B.两个班女生人数可能同样多
C.六(2)班女生人数可能比六(1)班多 D.六(2)班女生人数一定比男生多
6、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )
A.0.25 B.0.3 C.2 D.30
7、下列问题中,适合抽样调查的是( )
A.市场上某种食品含糖量是否符合国家标准
B.审核书稿中的错别字
C.旅客上飞机前的安检
D.了解我校初二某班男生身高状况
8、为全面掌握小区居民新冠疫苗接种情况,社区工作人员设计了以下几种调查方案:
方案一:调查该小区每栋居民楼的10户家庭成员的疫苗接种情况;
方案二:随机调查该小区100位居民的疫苗接种情况;
方案三:对本小区所有居民的疫苗接种情况逐一调查统计.
在上述方案中,能较好且准确地得到该小区居民疫苗接种情况的是( )
A.方案一 B.方案二 C.方案三 D.以上都不行
9、在实数,,,,中,无理数出现的频率是( )
A. B. C. D.
10、下列问题不适合用全面调查的是( )
A.旅客上飞机前的安检 B.企业招聘,对应试人员进行面试
C.了解全班同学每周体育锻炼的时间 D.调查市场上某种食品的色素含量是否符合国家标准
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的统计图是___统计图.(填“条形”、“扇形”或“折线”)
2、为纪念中国人民抗日战争的胜利,9月3日,某校开展中国人民抗日战争胜利纪念日征文活动.为了解学生参加活动情况,从全校6000名学生中,随机抽取了120名学生进行调查.在这次抽样调查中,样本容量是____.
3、2021年4月25日-29日,福州举办第四届数字中国建设峰会,会务组要知道所有参会人员的体温状况,应采用的调查方式是__.(填“抽样调查”或“全面调查”)
4、某市今年共有12万名考生参加中考,为了了解这12万名考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析.在这次调查中,被抽取的1500名考生的数学成绩是______.(填“总体”,“样本”或“个体”)
5、在数3141592653中,偶数出现的频率是______.
三、解答题(5小题,每小题10分,共计50分)
1、你喜欢气球吗?你喜欢什么颜色的气球?你能进行一次调查,以帮助气球生产厂家确定各种颜色气球的生产比例吗?几人组成一个调查小组.
(1)讨论下面几个问题:调查的目的、问题、对象是什么?选择怎样的调查方式?样本如何选取?调查所得数据如何处理?
(2)制订一个调查方案,展开调查.
(3)将各组的调查方案和调查结果在全班交流,讨论调查的一般步骤和抽样调查中的注意事项,并撰写一份调查报告,给有关厂家提供适当的信息.
2、政府为了解市民的学习爱好,有关部门统计了最近 6 个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.
(1)本次共调查了多少人?
(2)请将条形统计图补充完整,并求“其它”所在扇形的圆心角的度数.
3、每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某中学为确保学生安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛.学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题.
(1)参加此安全竞赛的学生共有 人;
(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为 .
(3)将条形统计图补充完整.
4、为了提升学生的交通安全意识,学校计划开展全员“交通法规”知识竞赛,七(3)班班主任赵老师给全班同学定下的目标是:合格率达90%,优秀率达25%(x<60为不合格;x≥60为合格;x≥90为优秀),为了解班上学生对“交通法规”知识的认知情况,赵老师组织了一次模拟测试,将全班同学的测试成绩整理后作出如下频数分布直方图.(图中的70~80表示,其余类推)
(1)七(3)班共有多少名学生?
(2)赵老师对本次模拟测试结果不满意,请通过计算给出一条她不满意的理由;
(3)模拟测试后,通过强化教育,班级在学校“交通法规”竞赛中成绩有了较大提高,结果优秀人数占合格人数的,比不合格人数多10人.本次竞赛结果是否完成了赵老师预设的目标?请说明理由.
5、一个面粉批发商统计了前48个星期的销售量(单位:):
24.4 | 19.1 | 22.7 | 20.4 | 21.0 | 21.6 | 22.8 | 20.9 | 21.8 | 18.6 |
24.3 | 20.5 | 19.7 | 23.5 | 21.6 | 19.8 | 20.3 | 22.4 | 20.2 | 22.3 |
21.9 | 22.3 | 21.4 | 19.2 | 23.5 | 20.5 | 22.1 | 22.7 | 23.2 | 21.7 |
21.1 | 23.1 | 23.4 | 23.3 | 21.0 | 24.1 | 18.5 | 21.5 | 24.4 | 22.6 |
21.0 | 20.0 | 20.7 | 21.5 | 19.8 | 19.1 | 19.1 | 22.4 |
|
|
请将数据适当分组,列出频数分布表,画出频数分布直方图,并分析这个面粉批发商每星期进面粉多少吨比较合适.
-参考答案-
一、单选题
1、B
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体.本题考查的对象是七年级800名学生期中数学考试情,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.
【详解】
解:A、题中的调查方式为抽样调查,选项正确,不符合题意;
B、总体为800名学生的期中数学成绩,而不是学生,选项错误,符合题意;
C、每名学生的期中数学成绩是个体,选项正确,不符合题意;
D、100名学生的期中数学成绩是总体的一个样本,选项正确,不符合题意;
故选B
【点睛】
本题主要考查了总体、个体与样本,解题要分清具体问题中的总体、个体与样本.关键是明确考查的对象,总体、个体与样本的考察对象是相同的,所不同的是范围的大小.
2、A
【解析】
【分析】
根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.
【详解】
解:①小明此次一共调查了10+60+20+10=100(人),此结论正确;
②由频数分布直方图知,每天阅读图书时间不足15分钟的人数与45-60分钟的人数相同,均为10人,此结论错误;
③每天阅读图书时间在15-30分钟的人数最多,有60人,此结论正确;
④每天阅读图书时间超过30分钟的人数占调查总人数的比例为=30%,此结论错误;
故选:A.
【点睛】
本题考查了读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.
3、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
A. 学校招聘教师,对应聘人员的面试,人员不多,且这个调查很重要不可漏掉任何人,适合普查,不符合题意;
B. 对进入地铁站的旅客携带物品的安检,人员不多,且这个调查很重要不可漏掉任何人,适合普查,不符合题意;
C. 鞋厂检查生产鞋底能承受的弯折次数,调查具有破坏性,适合抽样调查,符合题意;
D. 调查我校七年级全体学生的入学数学成绩,人员不多,且这个调查很重要不可漏掉任何人,适合普查,不符合题意;
故选C.
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
4、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、A
【解析】
【分析】
根据两个扇形统计图,只能得到两个班级男女生比例的大小,无法确定男生和女生的具体人数,由此即可得.
【详解】
解:∵两个班的人数不知道,
∴无法确定每个班的男生和女生的具体人数,
∴六(2)班女生人数一定比六(1)班多不合理,
故选:A.
【点睛】
题目主要考查从扇形统计图获取信息,理解题意,掌握扇形统计图表示的意义是解题关键.
6、B
【解析】
【分析】
先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可.
【详解】
由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人),
选择“5G时代”的人数为:30人,
∴选择“5G时代”的频率是:=0.3;
故选:B.
【点睛】
本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键.
7、A
【解析】
【分析】
根据抽样调查的定义依次分析判断即可得到答案.
【详解】
解:市场上某种食品含糖量是否符合国家标准适合抽样调查,故选项A符合题意;
审核书稿中的错别字适合全面调查,故选项B不符合题意;
旅客上飞机前的安检适合全面调查,故选项C不符合题意;
了解我校初二某班男生身高状况适合全面调查,故选项D不符合题意;
故选:A.
【点睛】
此题考查了抽样调查的定义,能理解定义并正确区分抽样调查与全面调查是解题的关键.
8、C
【解析】
【分析】
根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.
【详解】
解:因为全面掌握小区居民新冠疫苗接种情况,
所以对本小区所有居民的疫苗接种情况逐一调查统计.
故选:C.
【点睛】
本题考查了调查收集数据的过程与方法,正确掌握数据收集代表性是解题关键.
9、C
【解析】
【分析】
根据题意找出无理数的个数,用无理数的个数除以总数即可求得无理数出现的频率
【详解】
解:∵实数,,,,中,无理数有,,共3个,
∴无理数出现的频率是
故选C
【点睛】
本题考查了无理数,根据描述求频率,解答本题的关键掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.
10、D
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知.
【详解】
解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
B. 企业招聘,对应试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,
C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意,
D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意
故选D
【点睛】
本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.理解全面调查与抽样调查的适用范围是解题的关键.
二、填空题
1、折线
【解析】
【分析】
根据条形统计图,折线统计图和扇形统计图的特点进行判断即可.
【详解】
解:想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的的统计图的折线统计图,
故答案为:折线.
【点睛】
本题主要考查了条形统计图,折线统计图和扇形统计图的特点,解题的关键在于能够熟练掌握:扇形统计图表示的是部分在总体中所占的百分比,但一般不能够从图中得到具体的数据;折线统计图表示的事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
2、120
【解析】
【分析】
由题意根据样本容量是样本中包含的个体的数目进行分析可得答案.
【详解】
解:本次调查的样本是被随机抽取的120名学生,所以样本容量是120.
故答案为:120.
【点睛】
本题主要考查样本容量,注意掌握样本容量只是个数字,没有单位.
3、全面调查
【解析】
【分析】
根据事件的特点,结合全面调查特点即可确定调查方式.
【详解】
∵第四届数字中国建设峰会参会人员有限,疫情的需要,
∴选全面调查.
故答案为:全面调查
【点睛】
根据事件的特点,结合全面调查特征确定答案,做题的关键是弄清全面调查的优点以及局限性.
4、样本
【解析】
【分析】
总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,根据概念分析即可得到答案.
【详解】
解:1500名考生的数学成绩是总体的一个样本,
故答案为:样本
【点睛】
本题考查的是确定总体、个体和样本.解此类题需要注意考察对象实际应是表示事物某一特征的数据,而非考查的事物.
5、30%
【解析】
【分析】
在数3141592653中共出现了3个偶数,由频率的计算公式即可求得频率.
【详解】
由题意知,10个数字中出现了3个偶数,则偶数出现的频率为:
故答案为:30%
【点睛】
本题考查了频率的计算,根据频率的计算公式,知道总的次数及事件出现的次数即可求得频率.
三、解答题
1、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)分析题意,根据题目信息,即可回答;
(2)结合(1)中调查的目的、问题和对象,选择合适的调查方式即可制定合理的调查方案;
(3)根据抽样调查的特点,写一份调查报告即可.
【详解】
(1)调查的目的:帮助气球生产厂家确定各种颜色气球的生产比例;
问题:调查周围的人喜欢气球吗?如果喜欢,那么喜欢什么颜色的气球?
对象:接受调查的人可选择抽样调查的调查方式;
样本的选取:可根据自己的想法和具体情况选择合适的样本(此答案不唯一,只要合理即可);调查所得数据的处理:统计调查所得数据,计算出喜欢气球的人数和喜欢各种颜色气球的人数,然后计算比例;
(2)结合(1)中信息即可制定合理的调查方案,如:
问卷调查表:
你喜欢的气球颜色是什么?(在相应颜色下面画“√”) | |||||||
红 | 橙 | 黄 | 绿 | 青 | 蓝 | 紫 | 其他 |
|
|
|
|
|
|
|
|
简要说明:在学校每个班里挑选学号为3的倍数的同学,然后让这些人填写《问卷调查表》,然后统计每种颜色所占比例,形成扇形统计图,即可确定各种颜色气球生产比例;
(3)抽样调查的一般步骤包括:1、搜集统计资料,2、调查方案设计,3、实施调查过程,4、数据处理分析,5、提写调查报告;
抽样调查的注意点:1.随机取样,2.取样具有代表性,3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样;
根据抽样调查的特点,自己写一份调查报告即可.
【点睛】
本题考查了调查的目的、问题、对象以及普查和抽样调查的概念及应用.在实际问题中体会普查和抽样调查的特点及应用情景.能够运用所学知识分析、解決数学问题和实际问题.
2、 (1)本次共调查了16万人
(2)将条形统计图补充完整见解析,“其它”所在扇形的圆心角的度数为90°.
【解析】
【分析】
(1)用“学生”的人数除以其所占百分比可得;
(2)总人数减去其他职业人数求得“职工”的人数可补全图形,再用360°乘以“其它”的人数所占比例即可.
(1)
解:(1)到图书馆阅读的总人次为4÷25%=16(万人);
答:到图书馆阅读的总人次为16万人.
(2)
职工:16-4-2-4=6(万人),补全条形图如下:
扇形统计图中表示“其它”的扇形的圆心角度数为360°×=90°.
【点睛】
本题主要考查了条形统计图与扇形统计图,解题的关键是读懂统计图,从统计图中得到准确的信息.
3、(1)40;(2)90°;(3)见解析.
【解析】
【分析】
(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;
(2)求出“三等奖”所占的百分比,即可求出相应的圆心角的度数;
(3)求出“二等奖”的人数,即可补全条形统计图.
【详解】
解:(1)18÷45%=40(人),
故答案为:40;
(2)360°×=90°,
故答案为:90°;
(3)40﹣4﹣10﹣18=8(人),补全条形统计图如图所示:
【点睛】
本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键.
4、 (1)七(3)班共有50名学生;
(2)合格率为80%以及优秀率为18%均小于定下的目标;
(3)合格率及优秀率均达到目标.理由见解析.
【解析】
【分析】
(1)计算各频数之和即可求解;
(2)计算得出合格率和优秀率,与目标值比较即可;
(3)设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,根据题意列出一元一次方程求解即可.
(1)
解:4+6+9+10+12+9=50(名),
答:七(3)班共有50名学生;
(2)
解:x≥90的学生人数有9人,则优秀率为950×100%=18%<25%;
x≥60的学生人数有9+10+12+9=40人,则合格率为4050×100%=80%<90%;
答:合格率为80%以及优秀率为18%均小于定下的目标;
(3)
解:合格率及优秀率均达到目标.理由如下:
设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,
依题意得:3x+x-10=50,
解得:x=15,
合格人数为3x=3×15=45(人),则合格率为4550×100%=90%;
优秀人数为x=15(人),则合格率为1550×100%=30%>25%;
答:合格率及优秀率均达到目标.
【点睛】
本题考查了条形统计图,一元一次方程的应用,解决本题的关键是掌握条形统计图.
5、见解析
【解析】
【分析】
先算出数据最大值与最小值之差,取组距进行分组即可得频数分布表,频数分布直方图;
【详解】
解:计算最大值与最小值的差:
数据的最小值是18.5t,最大值是24.4t,(t),
决定组距与组数:
取组距为1t,则分成6组,
设每星期销售面粉xt,则可分为:
,,,
,,
频数分布表:
销售量 | 划记 | 频数 |
正一 | 6 | |
正丅 | 7 | |
正 | 9 | |
正正丅 | 12 | |
正 | 8 | |
正一 | 6 | |
合计 |
| 48 |
频数分布直方图:
∵这组数据的中位数在,
∴这批面粉批发商每星期进22吨面粉比较合适.
【点睛】
本题考查了频数分布表,频数分布直方图,解题的关键是将熟练掌握绘制频数分布表的方法.
数学八年级下册第十八章 数据的收集与整理综合与测试综合训练题: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试综合训练题,共19页。试卷主要包含了下列适合于抽样调查的是,下列调查中,调查方式合适的是等内容,欢迎下载使用。
数学八年级下册第十八章 数据的收集与整理综合与测试同步练习题: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试同步练习题,共19页。
冀教版八年级下册第十八章 数据的收集与整理综合与测试练习: 这是一份冀教版八年级下册第十八章 数据的收集与整理综合与测试练习,共22页。试卷主要包含了下列调查中,适合采用全面调查,下列调查中,适合用普查方式的是,以下调查中,适宜全面调查的是等内容,欢迎下载使用。