初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评
展开八年级数学下册第十八章数据的收集与整理专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、为了了解2017年我县九年级6023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是( )
A.2017年我县九年级学生是总体 B.每一名九年级学生是个体
C.200名九年级学生是总体的一个样本 D.样本容量是200
2、某学校对八年级1班50名学生进行体能评定,进行了“长跑”、“立定跳远”、“跳高”的测试,根据测试总成绩划分体能等级,等级分为“优秀”、“良好”、“合格”、“较差”四个等级,该班级“优秀”的有28人,“良好”的有15人,“合格”的有5人,则该班级学生这次体能评定为“较差”的频率是( )
A.2 B.0.02 C.4 D.0.04
3、为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是( )
A.此次调查的总体是600名学生 B.此次调查属于全面调查
C.此次调查的个体是被抽取的学生 D.样本容量是50
4、下列调查中,适合采用全面调查(普查)方式的是( )
A.了解江西省中小学生的视力情况
B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测
C.了解全国快递包裹产生包装垃圾的数量
D.了解抚州市市民对社会主义核心价值观的内容的了解情况
5、为了记录一个病人的体温变化情况,应选择的统计图是( )
A.条形统计图 B.扇形统计图 C.折线统计图 D.以上都不是
6、为了解某校八年级900名学生的体重情况,从中随机抽取了100名学生的体重进行统计分析.在这个问题中,样本是指( )
A.100 B.被抽取的100名学生
C.900名学生的体重 D.被抽取的100名学生的体重
7、一组数据的最大值为105,最小值为23,若确定组距为9,则分成的组数为( )
A.11 B.10 C.9 D.8
8、为了解某市参加中考75000名学生的体重情况,抽查其中2000名学生的体重进行统计分析,下列叙述正确的是( )
A.该调查是普查 B.2000名学生的体重是总体的一个样本
C.75000名学生是总体 D.每名学生是总体的一个个体
9、某公司的生产量在1﹣7月份的增长变化情况如图所示,从图上看,下列结论正确的是( )
A.1月份生产量最大
B.这七个月中,每月的生产量不断增加
C.1﹣6月生产量逐月减少
D.这七个月中,生产量有增加有减少
10、下列调查中,适合采用抽样调查的是( )
A.了解全班学生的身高 B.检测“天舟三号”各零部件的质量情况
C.对乘坐高铁的乘客进行安检 D.调查某品牌电视机的使用寿命
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的统计图是___统计图.(填“条形”、“扇形”或“折线”)
2、第十二届全国人大四次会议审议通过的《中华人民共和国慈善法》已于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了900名居民进行调查,并将调查结果制作成了如下不完整的统计图和表:
听说过 | 不知道 | 清楚 | 非常清楚 |
A | B | 225 | C |
根据以上信息求得“非常清楚”所占扇形的百分比为__%.
3、已知一个样本,27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,24,26,27,28,30,以2为组距画出频数分布直方图.
解:(1)计算最大值与最小值的差:______.
(2)确定组数与组距:已知组距为2,则,因此定为______组
(3)列频数分布表:
分组 | 划记 | 频数 |
2 | ||
3 | ||
8 | ||
4 | ||
3 | ||
合计 |
| 20 |
(4)画频数分布直方图:
4、为了解神舟飞船的设备零件的质量情况,选择抽样调查的方式是否合理______(填是或否).
5、某健步走运动爱好者用手机软件记录了某个月(30天)每天健抄走的步数并制成了如图所示的族计围根该,这个月中,他健步走的步数达到1.5万的天数是_______.
三、解答题(5小题,每小题10分,共计50分)
1、为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
(1)学校这次调查共抽取了多少名学生?
(2)请通过计算补充条形统计图;
(3)若该校共有学生2000名,请你估计该校有多少名学生喜欢书法?
2、为了调查居民的生活水平,有关部门对某个地区5个街道的50户居民的家庭存款额进行了调查,数据(单位:万元)如下:
1.6 3.5 2.3 6.5 2.2 1.9 6.8 4.8 5.0 4.7 2.3
1.5 3.1 5.6 3.7 2.2 3.3 5.8 4.3 3.6 3.8 3.0
5.1 7.0 3.1 2.9 4.4 5.8 3.8 3.7 3.3 5.2 4.1
4.2 4.8 3.0 4.0 4.6 6.0 2.4 3.3 6.1 5.0 4.9
3.0 3.1 7.2 1.8 5.0 1.9
将数据适当分组,并绘制相应的频数直方图.
3、要调查下面的问题,你觉得用什么调查方式比较合理?
(1)调查某种灯泡的使用寿命;
(2)调查你们学校七年级学生的体重;
(3)调查你们班学生早餐是否有喝牛奶的习惯.
4、下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?
(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.
5、为了提高长跑成绩,小彬坚持锻炼并于每周日记录下1500m的成绩:
小彬1500m成绩变化统计表
锻炼的星期数 | 1 | 2 | 3 | 4 | 5 | 6 |
成绩变化 |
如果要更清楚地看出小彬成绩的变化情况,你选择统计图还是统计表?如果要方便、准确地获得他锻炼5星期后的跑步成绩,你会如何选择?
-参考答案-
一、单选题
1、D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据总体、个体、样本、样本容量的定义,做出判断.
【详解】
解: 2017年我县九年级学生的数学成绩是总体,故A不符合题意;
每一名九年级学生的数学成绩是个体,故B不符合题意;
200名九年级学生的数学成绩是总体的一个样本,故C不符合题意;
样本容量是200,故D符合题意;
故选D
【点睛】
考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
2、D
【解析】
【分析】
先求解该班级学生这次体能评定为“较差”的频数,再利用频率=落在某小组的频数除以数据的总数,从而可得答案.
【详解】
解:该班级学生这次体能评定为“较差”的频数是:
则该班级学生这次体能评定为“较差”的频率是:
故选D
【点睛】
本题考查的是已知频数与数据的总数求解频率,掌握“频率=落在某小组的频数除以数据的总数”是解本题的关键.
3、D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、此次调查的总体是某校七年级学生的身高情况,故本选项不合题意;
B、此次调查属于抽样调查,故本选项不合题意;
C、此次调查的个体是每一名七年级学生的身高情况,故本选项不合题意;
D、样本容量是50.故本选项符合题意.
故选:D.
【点睛】
本题考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
4、B
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.
【详解】
解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;
B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;
C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;
D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.
故选:B.
【点睛】
本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、C
【解析】
【分析】
根据题意中的“变化情况”直接选择折线统计图.
【详解】
为了记录一个病人的体温变化情况,
应选择的统计图是折线统计图,
故选C.
【点睛】
本题考查了条形统计图,扇形统计图,折线统计图,频数直方图的概念,根据实际选择合适的统计图,根据题意中的“变化情况”选择统计图是解题的关键.折线统计图用折线的起伏表示数据的增减变化情况不仅可以表示数量的多少,而且可以反映数据的增减变化情况.
6、D
【解析】
【分析】
根据样本的定义进行判断即可.
【详解】
样本是观测或调查的一部分个体,所以样本是指被抽取的100名学生的体重.
故选:D.
【点睛】
本题考查了样本的定义,掌握样本的定义进行判断是解题的关键.
7、B
【解析】
【分析】
极差除以组距,大于或等于该值的最小整数即为组数.
【详解】
解:,
分10组.
故选:B.
【点睛】
本题考查了组距的划分,一般分为组最科学.
8、B
【解析】
【分析】
根据抽样调查、全面调查、总体、个体、样本的相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本)进行分析.
【详解】
解:根据题意可得:
该调查为抽样调查,不是普查,A选项错误,不符合题意;
2000名学生的体重是总体的一个样本,B 选项正确,符合题意;
75000名学生的体重情况是总体,C选项错误,不符合题意;
每名学生的体重是总体的一个个体,D选项错误,不符合题意;
故选B.
【点睛】
本题考查了抽样调查、全面调查、总体、个体、样本相关概念.解题关键是理解相关概念(抽样调查是从全部的调查研究对象中,选取一部分进行调查;总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本).
9、B
【解析】
【分析】
根据折线图的特点判断即可.
【详解】
解:观察折线图可知,这七个月中,每月的生产量不断增加,故B正确,C,D错误;
每月的生产量不断增加,故7月份的生产量最大,A错误;
故选:B.
【点睛】
本题考查折线统计图,增长率等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
10、D
【解析】
【分析】
对于精确度要求高的调查,事关重大的调查往往选用普查.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.
【详解】
解:A、对了解全班学生的身高,必须普查,不符合题意;
B、检测“天舟三号”各零部件的质量情况,必须普查,不符合题意;
C、对乘坐高铁的乘客进行安检,必须普查,不符合题意;
D、调查调查某品牌电视机的使用寿命,适合抽样调查,符合题意;
故选:D.
【点睛】
本题考查的是普查和抽样调查的选择,解题的关键是掌握调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
二、填空题
1、折线
【解析】
【分析】
根据条形统计图,折线统计图和扇形统计图的特点进行判断即可.
【详解】
解:想表示我国从2015~2020年间国民生产总值的变化情况,最适合采用的的统计图的折线统计图,
故答案为:折线.
【点睛】
本题主要考查了条形统计图,折线统计图和扇形统计图的特点,解题的关键在于能够熟练掌握:扇形统计图表示的是部分在总体中所占的百分比,但一般不能够从图中得到具体的数据;折线统计图表示的事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
2、30
【解析】
【分析】
由“清楚”扇形所对应的圆心角可得其占总体的百分比,再根据各项百分比之和为1可得答案.
【详解】
解:∵“清楚”的人数占总人数的百分比为×100%=25%,
∴“非常清楚”扇形所占的百分比为1﹣(30%+15%+25%)=30%,
故答案为:30.
【点睛】
本题主要考查扇形统计图,掌握整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数是解题的关键.
3、 32-23=9 5
【解析】
略
4、否
【解析】
【分析】
由全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.据此解答即可.
【详解】
解:为了了解神舟飞船的设备零件的质量情况,意义重大,适合普查,不适合抽样调查.
故答案为:否.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、3
【解析】
【分析】
根据条形统计图所表示的各个组的数量可得答案.
【详解】
解:由条形统计图可得,
这个健步走爱好者健步走的步数达到1.5万的天数是3天,
故答案为:3.
【点睛】
本题考查条形统计图,从条形统计图中获取正确的信息是解决问题的关键.
三、解答题
1、(1)学校这次调查共抽取了100名学生;(2)图形见解析;(3)估计该校有500名学生喜欢书法.
【解析】
【分析】
(1)用“戏曲”的人数除以其所占百分比可得;
(2)用总人数乘以“民乐”人数所占百分比求得其人数,据此即可补全图形;
(3)用总人数乘以样本中“书法”人数所占百分比可得.
【详解】
(1)学校本次调查的学生人数为:
10÷ 10%= 100名,
答:学校这次调查共抽取了100名学生;
(2)“民乐”的人数为100×20%= 20人,
补全图形如下:
(3)估计该校喜欢书法的学生人数为:
2000×25%= 500名,
答:估计该校有500名学生喜欢书法.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.
2、见解析
【解析】
【分析】
绘制频数分布直方图的一般步骤为:1、收集数据;2、整理数据;3、分析数据(决定组距、频数);4、绘制频数分布表;5、绘制频数分布直方图,在本题中,由于最大的数据为7.2,最小的数据为1.5,则极差为7.2-1.5=5.7,于是需将数据分为6组,接下来对数据进行分组,统计出每组数据的个数,按照绘制频数分布直方图的方法来作图即可.
【详解】
解:第一步,计算最大值与最小值的差:
在所给的数据中,最大值是7.2,最小值是1.5,
它们的差是7.2-1.5=5.7,
第二步,决定组距与组数:
由于最大值与最小值的差是5.7,
如果取组距为1,那么由于,可分成6组,
组数合适,于是取组距为1,组数为6,
第三步,列频数分布表:
分组 | 频数 |
10 | |
10 | |
11 | |
10 | |
5 | |
4 | |
合计 | 50 |
第四步,画频数直方图:
【点睛】
本题考查了绘制频数分布直方图的方法,属于基础题,熟练掌握绘制频数分布直方图的一般步骤是解题关键.
3、(1)抽样调查更合理,因为灯泡寿命的调查具有破坏性;(2)全面调查和抽样调查都可以;(3)全面调查
【解析】
【分析】
根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答即可.
【详解】
解:(1)调查某种灯泡的使用寿命,适合抽样调查,因为灯泡寿命的调查具有破坏性.
(2)调查学校七年级学生的体重,普查和抽样调查都可以;
(3)调查你们班学生早餐是否有喝牛奶的习惯.适合全面调查.
【点睛】
本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
4、(1)全面调查;(2)抽样调查;(3)抽样调查
【解析】
【分析】
根据抽样调查和全面调查的特点即可作出判断.适合全面调查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.
【详解】
解:(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.属于全面调查;
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.属于抽样调查;
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.属于抽样调查.
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.掌握抽样调查和全面调查的区别是解题关键.
5、见解析.
【解析】
【分析】
根据折线统计图的特点:能够清楚反映事物的变化情况,统计表的特点:可以将大量数据的分类结果清晰,一目了然的表达出来,由此进行求解即可.
【详解】
统计表和折线统计图都能反映出成绩的变化情况.相对而言,统计表反映的数据准确并且容易查找,但直观性不如统计图;统计图能直观地表示出变化情况,但从统计图中看出的数据往往不够准确,因此有的统计图会在相应的地方标上原始数据.在这个问题中,若想直观反映成绩变化,则选择折线统计图优势更明显;若想准确读出锻炼5星期后的成绩,则统计表更合适.
【点睛】
本题主要考查了统计图和统计表的选择,解题的关键在于能够熟练掌握二者的特点.
八年级下册第十八章 数据的收集与整理综合与测试练习: 这是一份八年级下册第十八章 数据的收集与整理综合与测试练习,共18页。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试习题: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试习题,共20页。试卷主要包含了下列调查中,调查方式合适的是等内容,欢迎下载使用。
初中第十八章 数据的收集与整理综合与测试课后练习题: 这是一份初中第十八章 数据的收集与整理综合与测试课后练习题,共19页。