初中数学第十八章 数据的收集与整理综合与测试巩固练习
展开八年级数学下册第十八章数据的收集与整理难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、体育老师让小明5分钟内共投篮50次,一共投进30个球,请问投进球的频率是( )
A.频率是0.5 B.频率是0.6 C.频率是0.3 D.频率是0.4
2、2020年10月16日是第40个世界粮食日,某校学生会开展了“光盘行动,从我做起”的活动,对随机抽取的100名学生的在校午餐剩余量进行调查,结果有86名学生做到“光盘”,那么下列说法不合理的是( )
A.个体是每名学生是否做到“光盘”
B.样本容量是100
C.全校只有14名学生没有做到“光盘”
D.全校约有86%的学生做到“光盘”
3、下列调查中,调查方式选择不合理的是( )
A.为了了解新型炮弹的杀伤半径,选择抽样调查
B.为了了解某河流的水质情况,选择普查
C.为了了解神舟飞船的设备零件的质量情况,选择普查
D.为了了解一批袋装食品是否含有防腐剂,选择抽样调查
4、下列调查中,适合进行全面调查的是( )
A.《新闻联播》电视栏目的收视率
B.全国中小学生喜欢上数学课的人数
C.某班学生的身高情况
D.市场上某种食品的色素含量是否符合国家标准
5、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID﹣19),简称“新冠肺炎”,世界卫生组织命名为“2019冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )
A.2 B.11.1% C.18 D.
6、下列说法中:①除以一个数等于乘以这个数的倒数;②用四个圆心角都是的扇形,一定可以拼成一个圆;③把5克盐放入100克水中,盐水的含盐率是5%;④如果小明的体重比小方体重少,那么小方体重比小明体重多25%;⑤扇形统计图可以直观地表示各部分数量与总数之间的关系.其中正确说法的个数是( )
A.1个 B.2个 C.3个 D.4个
7、小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是( )
A.0.6 B.6 C.0.4 D.4
8、下列调查中,适合用全面调查的方式收集数据的是( )
A.对某市中小学生每天完成作业时间的调查
B.对全国中学生节水意识的调查
C.对某班全体学生新冠疫苗接种情况的调查
D.对某批次灯泡使用寿命的调查
9、要调查下列问题,适合采用普查的是( )
A.中央电视台《开学第一课》的收视率 B.某城市居民6月份人均网上购物的次数
C.即将发射的气象卫星的零部件质量 D.银川市中小学生的视力情况
10、护士为了描述某病人某一天的体温变化情况,以下最合适的统计图是( )
A.扇形统计图 B.条形统计图 C.折线统计图 D.直方图
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、全面调查和抽样调查是收集数据的两种方式._______收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;_______有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
2、2021年4月25日-29日,福州举办第四届数字中国建设峰会,会务组要知道所有参会人员的体温状况,应采用的调查方式是__.(填“抽样调查”或“全面调查”)
3、某中学要了解八年级学生的视力情况,在全校八年级中抽取了30名学生进行检测,在这个问题中,总体是_______,样本是_______,样本容量是_______.
4、要反映我市一周内每天的最低气温的变化情况,宜采用 ___统计图.
5、已知某校学生来自A、B、C三个地区,这三个地区的学生人数比是1:3:2,如图所示的扇形图表示上述分布情况,则代表C地区的扇形圆心角是_____°.
三、解答题(5小题,每小题10分,共计50分)
1、某公司2009年至2010年的支出情况如下:
(1)2010年原料的支出金额是多少?工资的支出金额是多少?
(2)2009年公司的工资支出占总支出的,2010年与2009年相比,公司在工资方面的金额支出是变多了还是变少了?
2、4月23日是“世界读书日”,我校校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解学生周末两天的读书时间,校团委随机调查了部分学生的读书时间x(单位:分钟),把读书时间分为四组:A(30≤x<60),B.(60≤x<90),C.(90≤x<120),D(120≤x<150).部分数据信息如下:
a.B组和C组的所有数据:85 90 60 70 110 75 65 78 100 90 80 95 90
b.根据调查结果绘制了如下尚不完整的统计图:
请根据以上信息,回答下列问题:
(1)被调查的学生共有多少人,并补全频数分布直方图;
(2)在扇形统计图中,C组所对应的扇形圆心角是_____;
(3)请结合统计图给全校学生发出一条合理化的倡议.
3、某校兴趣小组想了解球的弹性大小,准备了A、B两个球,分别让球从不同高度自由下落到地面,测量球的反弹高度,记录数据后绘制成如图所示的统计图.
请你根据图中提供的信息解答下列问题:
(1)当起始高度为80cm时,B球的反弹高度是起始高度的____________%.
(2)比较两个球的反弹高度的变化情况,____________球弹性大.(填“A”或“B”)
(3)下列的推断合理的是____________(只填序号)
①根据统计图预测,如果下落的起始高度继续增加,A球的反弹高度可能会继续增加;
②从统计图上看,两球的反弹高度不会超过它们的起始高度.
4、为了了解中学生的体能状况,某校抽取了50名学生进行1分钟跳绳测试,将所得数据整理后,分成5组绘成了频数分布直方图,如图(图中数据含最低值不含最高值).其中前4个小组的频率依次为0.04,0.12,0.4,0.28.
(1)第4组的频数是多少?
(2)第5组的频率是多少?
(3)哪一组的频数最大?
(4)补全统计图,并绘出频数分布折线图.
5、下列调查中,哪些是全面调查的方式,哪些是用抽样调查方式来收集数据的?
(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据频率是指每个对象出现的次数与总次数的比值(或者百分比).即频率=频数÷总数可得答案.
【详解】
解:小明进球的频率是30÷50=0.6,
故选:B.
【点睛】
此题主要考查了频率,关键是掌握计算方法.
2、C
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、个体是每一名学生是否做到“光盘”情况,故A不合题意;
B、样本容量是100,故B不合题意;
C、样本中有14名学生没有做到“光盘”,故C符合题意;
D、全校约有86%的学生做到“光盘”,故D不合题意;
故选:C.
【点睛】
本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
3、B
【解析】
【分析】
根据调查的不同目的来选择全面调查或抽样调查,再判断四个选项即可.
【详解】
解:A选项,C选项,D选项选择调查方式合理,故A选项,C选项,D选项不符合题意.
B选项,为了了解某河流的水质情况,选择普查耗费人力,物力和时间较多,而选择抽样调查更加节约,且和普查的结果相差不大,故B选项符合题意.
故选:B.
【点睛】
本题考查全面调查和抽样调查,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.
4、C
【解析】
【详解】
解:A、“《新闻联播》电视栏目的收视率”适合进行抽样调查,则此项不符题意;
B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;
C、“某班学生的身高情况”适合进行全面调查,则此项符合题意;
D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;
故选:C.
【点睛】
本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键.
5、A
【解析】
【分析】
根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案.
【详解】
解:CoronaVriusDisease中共有18个字母,其中r出现2次,
∴频数是2,
故选A.
【点睛】
本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数.
6、B
【解析】
【分析】
根据除法法则、圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点分析即可.
【详解】
解:①除以一个不等于零的数等于乘以这个数的倒数,故不正确;
②用四个圆心角都是且半径相等的扇形,一定可以拼成一个圆,故不正确;
③把5克盐放入100克水中,盐水的含盐率是5÷(5+100)≈4.8%,故不正确;
④设小方体重为a,则小明的体重为a.小方的体重比小明的体重多(a-a)÷a=25%,正确;
⑤扇形统计图可以直观地表示各部分数量与总数之间的关系,正确.
故选B.
【点睛】
本题考查了除法法则,圆与扇形的关系,单位“1”的含义,百分数的意义,以及扇形统计图的特点,掌握单位“1”的含义,百分数的意义是关键.
7、C
【解析】
【分析】
先求出反面朝上的频数,然后根据频率=频数÷总数求解即可
【详解】
解:∵小明抛一枚硬币100次,其中有60次正面朝上,
∴小明抛一枚硬币100次,其中有40次反面朝上,
∴反面朝上的频率=40÷100=0.4,
故选C.
【点睛】
本题主要考查了根据频数求频率,解题的关键在于能够熟练掌握频率=频数÷总数.
8、C
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.
【详解】
解:A. 对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;
B. 对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;
C. 对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;
D. 对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
9、C
【解析】
【分析】
由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.
【详解】
解:A、调查中央电视台《开学第一课》的收视率,适合抽查,故本选项不合题意;
B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意;
C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意;
D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意.
故选:C.
【点睛】
本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
10、C
【解析】
【分析】
根据题意,描述某病人某一天的体温变化情况最合适的应该反映变化趋势,则选取折线统计图,据此求解即可.
【详解】
解:∵护士为了描述某病人某一天的体温变化情况,
∴最合适的统计图是折线统计图
故选C
【点睛】
本题考查了根据实际选取合适的统计图,理解题意是解题的关键.条形统计图的特点:能清楚的表示出数量的多少;折线统计图的特点:不但可以表示出数量的多少,而且能看出各种数量的增减变化情况;扇形统计图比较清楚地反映出部分与部分、部分与整体之间的数量关系.
二、填空题
1、 全面调查 抽样调查
【解析】
略
2、全面调查
【解析】
【分析】
根据事件的特点,结合全面调查特点即可确定调查方式.
【详解】
∵第四届数字中国建设峰会参会人员有限,疫情的需要,
∴选全面调查.
故答案为:全面调查
【点睛】
根据事件的特点,结合全面调查特征确定答案,做题的关键是弄清全面调查的优点以及局限性.
3、 八年级学生的视力情况 30名学生的视力情况 30
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量
【详解】
解:总体是八年级学生的视力情况,样本是30名学生的视力情况,样本容量是30,
故答案为:八年级学生的视力情况,30名学生的视力情况,30.
【点睛】
本题考查了总体、个体、样本、样本容量,解题的关键是要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4、折线
【解析】
【分析】
折线统计图的特点:①能清楚地反映事物的变化情况;②显示数据变化趋势.
【详解】
解:要反映无锡一周内每天的最高气温的变化情况,宜采用折线统计图,
故答案为:折线.
【点睛】
本题主要考查了统计图的选择,据具体问题选择合适的统计图,可以使数据变得清晰直观,因此要想准确地反映数据的不同特征,就要选择合适的统计图.
5、120
【解析】
【分析】
根据三个地区的学生人数比求出扇形图上三个地区对应扇形的圆心角度数的比,进而可求出C地区的扇形圆心角.
【详解】
解:∵A、B、C三个地区的学生人数比是1:3:2.
∴A、B、C三个地区对应扇形的圆心角度数的比是1:3:2.
∴C地区的扇形圆心角为.
故答案为:120.
【点睛】
本题考查扇形统计图的圆心角,熟练掌握该知识点是解题关键.
三、解答题
1、(1)2010年原料的支出金额是6万元,工资的支出金额是12万元;(2)2009年公司的工资支出是9万元,2010年与2009年相比,工资支出的金额增多了.
【解析】
【分析】
(1)根据2010年的总支出乘以原料支出占的百分比即可得到结果;根据2010年的总支出乘以工资支出占的百分比即可得到结果;
(2)求出2009年与2010年工资支出之差,即可得到结果.
【详解】
解:(1)2010年原料的支出金额是(万元),
工资的支出金额是(万元);
(2)2009年公司的工资支出是(万元),
由(1)知2010年工资的支出金额是12万元,
∴2010年与2009年相比,工资支出的金额增多了.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
2、 (1)20,作图见解析
(2)108°
(3)书是人类进步的阶梯,同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)
【解析】
【分析】
(1)由扇形统计图中A所占扇形比例为20%和频数分布直方图中A组频数为4,即可得总人数为4÷20%=20人,再由题干可求得B组人数为7人,D组人数为3人,补全频数分布直方图即可.
(2)由(1)知频数分布直方图中C组频数为6,故C组所对应扇形圆心角为
(3)与统计图的数据相关即可,答案不唯一
(1)
总人数为4÷20%=20人
B组人数为13-6=7人
D组人数为20-4-6-7=3人
补全频数分布直方图如图所示
(2)
故C组所对应的扇形圆心角是108°.
(3)
书是人类进步的阶梯、同学们周末两天只有少部分人读书时间在两小时以上,需增加读书的时间.(答案不唯一)
【点睛】
本题考查了数据的调查及整理.频数分布直方图是用小长方形的面积来反映数据落在各个小组内的频数的大小的统计图.扇形统计图,特点:扇形统计图能清楚地表示出各部分在总体中所占的百分比,缺点:在两个扇形统计图中,若一个统计图中的某一个量所占的百分比比另一个统计图中的某一个量所占的百分比多,容易造成第一个统计量大于第二个统计量的错觉.注意:扇形统计图中,用圆代表总体,扇形的大小代表各部分数量占总体数量的百分数,但是没有给出具体数值,因此不能通过两个扇形统计图来比较两个统计量的多少.
3、 (1)62.5%
(2)A
(3)①②
【解析】
【分析】
(1)根据折线统计图可知起始高度为80cm时,B球的反弹高度,由此可得百分比;
(2)根据折线统计图可知A球每次反弹的高度都比B球高,由此即可得到答案;
(3)①由折线统计图可知4球的反弹高度变化趋势还非常明显,从而可判断A球的反弹高度可能会继续增加;②从折线统计图可知,反弹的高度是不会超过下路的起始高度的.
(1)
解:由折线统计图可知当起始高度为80cm时,B球的反弹高度是50cm,是起始高度的62.5%,
故答案为:62.5%.
(2)
解:比较两个球反弹高度的变化情况可知,A球每次反弹的高度都比B球高,所以A球的弹性大,
故答案为:A.
(3)
解:①根据统计图可知,如果下落的起始高度继续增加,A球的反弹高度可能会继续增加;
②从统计图上看,两个球的反弹高度一直低于起始高度,并且差距越来越大,因此不会超过起始高度.
故答案为:①②.
【点睛】
本题主要考查了折线统计图,能正确准确读懂统计图是解题关键.
4、(1)14;(2)0.16;(3) 170~180这一频数最大;(4)见解析
【解析】
【分析】
(1)根据总人数以及第四组的频率,求解即可;
(2)根据总频率为1,以及其他四组的频率即可求解;
(3)观察统计图,即可求除频数最大的一组;
(4)按照频数分布直方图以及频数分布折线图的画法,求解即可.
【详解】
解:(1)第4组的频数是0.28×50=14;
(2)第5组频率为1-0.04-0.12-0.4-0.28=0.16
(3)由统计图可知:170~180这一组频数最大.
(4)由(1)得第四组的频数为14,
补全统计图如下:
频数分布折线图如图.
【点睛】
本题考查了对频数、频率概念的理解,读频数分布直方图的能力和利用统计图获取信息的能力,画频数分布折线图,解题的关键是理解频数、频率的概念,并从频数分布直方图的中获取相关数据.
5、(1)全面调查;(2)抽样调查;(3)抽样调查
【解析】
【分析】
根据抽样调查和全面调查的特点即可作出判断.适合全面调查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.
【详解】
解:(1)为了了解你所在的班级的每个同学的身高,向全班同学做调查.属于全面调查;
(2)为了了解你所在的班级的同学每天的学习时间,选取班级中学号为单号数的所有同学做调查.属于抽样调查;
(3)为了了解某奶牛场中500头奶牛的产奶量,从中抽取出50头进行分析测量.属于抽样调查.
【点睛】
本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、全面调查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.掌握抽样调查和全面调查的区别是解题关键.
数学八年级下册第十八章 数据的收集与整理综合与测试巩固练习: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试巩固练习,共21页。试卷主要包含了下列调查中,最适合抽样调查的是,以下调查中,适宜全面调查的是,下列调查中,适合用普查方式的是等内容,欢迎下载使用。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试达标测试: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试达标测试,共18页。试卷主要包含了下列调查中,适合采用全面调查等内容,欢迎下载使用。
冀教版第十八章 数据的收集与整理综合与测试随堂练习题: 这是一份冀教版第十八章 数据的收集与整理综合与测试随堂练习题,共18页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。