初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试综合训练题
展开八年级数学下册第十八章数据的收集与整理专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列调查中,适合采用抽样调查的是( ).A.了解全市中学生每周使用手机的时间 B.对乘坐飞机的乘客进行安全检查
C.调查我校初一某班的视力情况 D.检查“北斗”卫星重要零部件的质量
2、要了解我市初中学生完成课后作业所用的时间,下列抽样最适合的是( )
A.随机选取城区6所初中学校的所有学生
B.随机选取城区与农村各3所初中学校所有女生
C.随机选取我市初中学校三个年级各1000名学生
D.随机选取我市初中学校中七年级5000名学生
3、下列调查中,其中适合采用抽样调查的是( )
A.调查某班50名同学的视力情况
B.为了解新型冠状病毒(SARS-CoV-2)确诊病人同一架飞机乘客的健康情况
C.为保证“神舟9号”成功发射,对其零部件进行检查
D.检测中卫市的空气质量
4、下列调查中,适合用全面调查的方式收集数据的是( )
A.对某市中小学生每天完成作业时间的调查
B.对全国中学生节水意识的调查
C.对某班全体学生新冠疫苗接种情况的调查
D.对某批次灯泡使用寿命的调查
5、为了了解2017年我县九年级6023名学生学业水平考试的数学成绩,从中随机抽取了200名学生的数学成绩,下列说法正确的是( )
A.2017年我县九年级学生是总体 B.每一名九年级学生是个体
C.200名九年级学生是总体的一个样本 D.样本容量是200
6、下列做法正确的是( )
A.在嫦娥五号着陆器发射前,对其零件的检测采用抽样调查
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成扇形统计图
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度
7、某县为了传承中华优秀传统文化,组织了一次全县600名学生参加的“中华经典诵读”大赛.为了解本次大赛的选手成绩,随机抽取了其中50名选手的成绩进行统计分析.在这个问题中,下列说法中正确的是( )
A.这600名学生的“中华经典诵读”大赛成绩的全体是总体
B.50名学生是总体的一个样本
C.每个学生是个体
D.样本容量是50名
8、某中学就周一早上学生到校的方式问题,对八年级的所有学生进行了一次调查,并将调查结果制作成了如下表格,则步行到校的学生频率是( )
八年级学生人数 | 步行人数 | 骑车人数 | 乘公交车人数 | 其他方式人数 |
300 | 75 | 12 | 135 | 78 |
A.0.1 B.0.25 C.0.3 D.0.45
9、如图是一所学校对学生上学方式进行调查后,根据调查结果绘制了一个不完整的统计图,其中“其他”部分所对的圆心角度数是36°则步行部分所占的百分比是( )
A.36% B.40% C.45% D.50%
10、为了调查某校七年级学生的身高情况,在七年级的600名学生中随机抽取了50名学生,下列说法正确的是( )
A.此次调查的总体是600名学生 B.此次调查属于全面调查
C.此次调查的个体是被抽取的学生 D.样本容量是50
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为促进城市交通更加文明,公共秩序更加优良,各个城市陆续发布“车让人”的倡议,此倡议得到了市民的一致赞赏.为了更好地完善“车让人”倡议,某市随机抽取一部分市民对“车让人”的倡议改进意见支持情况进行统计,分为四类:. 加大倡议宣传力度;. 加大罚款力度;. 明确倡议细则;. 增加监控路段,并将统计结果绘制成如图所示的两幅不完整的统计图.则扇形统计图中的度数为__________.
2、某同学对全班50名同学感兴趣的课外活动项目进行了调查,绘制下表:
活动项目 | 体育运动 | 学科兴趣小组 | 音乐 | 舞蹈 | 美术 |
人数(人) | 15 | 12 | 10 | 5 | 8 |
(1)全班同学最感兴趣的课外活动项目是______;
(2)对音乐感兴趣的人数是____,占全班人数的百分比是_______.
3、下面几个问题,应该做全面调查还是抽样调查?
(1)要调查市场上某种食品添加剂是否符合国家标准_______;
(2)检测某城市的空气质量_______;
(3)调查一个村子所有家庭的收入_______;
(4)调查人们对保护环境的意识_______;
(5)调查一个班级中的学生对建立班级英语角的看法_______;
(6)调查人们对电影院放映的电影的热衷程度_______
4、已知某组数据的频数为63,样本容量为90,则频率为____.
5、一个扇形统计图中,某部分占总体的百分比为13%,则该部分所对扇形圆心角为______.
三、解答题(5小题,每小题10分,共计50分)
1、某地近几年来的自来水的价格(元/吨)如下:
年份 | 2004 | 2006 | 2008 |
水价/(元/吨) | 1.46 | 1.92 | 2.53 |
如今该地自来水公司决定向物价部门申请涨价,企业根据上述信息制作了统计图,你觉得下面两幅图,哪幅是自来水公司制作的?
2、你喜欢气球吗?你喜欢什么颜色的气球?你能进行一次调查,以帮助气球生产厂家确定各种颜色气球的生产比例吗?几人组成一个调查小组.
(1)讨论下面几个问题:调查的目的、问题、对象是什么?选择怎样的调查方式?样本如何选取?调查所得数据如何处理?
(2)制订一个调查方案,展开调查.
(3)将各组的调查方案和调查结果在全班交流,讨论调查的一般步骤和抽样调查中的注意事项,并撰写一份调查报告,给有关厂家提供适当的信息.
3、小明参加卖报纸的社会实践活动,他调查了一个报亭某天A、B、C三种报纸的销售量,并把调查结果绘制成如图所示条形统计图.
(1)求该天A、C报纸的销售量各占这三种报纸销售量之和的百分比.
(2)请绘制该天A、B、C三种报纸销售量的扇形统计图.
(3)小明准备按上述比例购进这三种报纸共100份,他应购进这三种报纸各多少份.
4、某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.
第一组 | A | B | C | D | E | 获胜场数 | 总积分 |
A |
| 2:1 | 2:0 | 1:2 | 2:0 | x | 13 |
B | 1:2 |
| m | 0:2 | 1:2 | 0 | y |
C | 0:2 | n |
| 1:2 | 2:1 | 2 | p |
D | 2:1 | 2:0 | 2:1 |
| 1:2 | 3 | 12 |
E | 0:2 | 2:1 | 1:2 | 2:1 |
| 2 | 9 |
根据上表回答下列问题:
(1)第一组一共进行了 场比赛,A队的获胜场数x为 ;
(2)当B队的总积分y=6时,上表中m处应填 ,n处应填 ;
(3)写出C队总积分p的所有可能值为: .
5、垃圾分类是一项“利国利民”的民生工程,需要全社会的共同参与.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,如图表是七年级各班一周收集的可回收垃圾的重量(千克)的频数表和频数分布直方图(每组含前一个边界值,不含后一个边界值).
某校七年级各班一周收集的可回收垃圾的重量的频数表
组别(kg) | 频数 |
4.0~4.5 | 2 |
4.5~5.0 | a |
5.0~5.5 | 3 |
5.5~6.0 | 1 |
(1)求a的值
(2)已知收集的可回收垃圾以1.1元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到60元?
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.
【详解】
解:A、了解全市中学生每周使用手机的时间,适合采用抽样调查,符合题意;
B、对乘坐飞机的乘客进行安全检查,适合采用全面调查,不符合题意;
C、调查我校初一某班的视力情况,适合采用全面调查,不符合题意;
D、检查“北斗”卫星重要零部件的质量,适合采用全面调查,不符合题意,
故选:A.
【点睛】
本题考查了抽样调查和全面调查的区别,解题的关键是掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
2、C
【解析】
【分析】
抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
【详解】
解:A、随机选取城区6所初中学校的所有学生,不具有代表性,故选项不符合题意;
B、随机选取城区与农村各3所初中学校所有女生,不具有代表性,故选项不符合题意;
C、随机选取我市初中学校三个年级各1000名学生,具有代表性,故选项符合题意;
D、随机选取我市初中学校中七年级5000名学生,不具有代表性,故选项不符合题意;
故选:C.
【点睛】
本题主要考查抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.
3、D
【解析】
【分析】
抽样调查是通过对样本调查来估计总体特征,其调查结果是近似的;而全面调查得到的结果比较准确;根据对调查结果的要求对选项进行判断.
【详解】
A调查某班50名同学的视力情况,人数较少,应采用全面调查,故不符合要求;
B为了解新型冠状病毒确诊病人同一架飞机乘客的健康状况,意义重大,应采用全面调查,故不符合要求;
C为保证“神州9号”成功发射,对零部件进行检查,意义重大,应采用全面调查,故不符合要求;
D检查中卫市的空气质量,应采用抽样调查,故符合要求;
故选D.
【点睛】
本题考察了抽样调查与全面调查.解题的关键与难点在于理清对调查结果的要求.
4、C
【解析】
【分析】
由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.
【详解】
解:A. 对某市中小学生每天完成作业时间的调查,适合抽样调查,故此选项不符合题意;
B. 对全国中学生节水意识的调查,适合抽样调查,故此选项不符合题意;
C. 对某班全体学生新冠疫苗接种情况的调查,适合全面调查,故此选项符合题意;
D. 对某批次灯泡使用寿命的调查,适合抽样调查,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.
5、D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据总体、个体、样本、样本容量的定义,做出判断.
【详解】
解: 2017年我县九年级学生的数学成绩是总体,故A不符合题意;
每一名九年级学生的数学成绩是个体,故B不符合题意;
200名九年级学生的数学成绩是总体的一个样本,故C不符合题意;
样本容量是200,故D符合题意;
故选D
【点睛】
考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
6、D
【解析】
【分析】
根据抽样调查与全面调查的概念、扇形统计图、条形统计图、折线统计图的优势,抽样调查中样本的代表性逐一判断即可.
【详解】
解:A.在嫦娥五号着陆器发射前,对其零件的检测采用全面调查,故此选项错误,不合题意;
B.本学期共进行了8次数学测试,小明想要清楚地知道自己成绩的走势,最好把8次成绩绘制成折线统计图,故此选项错误,不合题意;
C.为了调查宣城市七年级学生的体重情况,小刚对收集来的本校七年级同学体重数据进行了从大到小的排序,把排名前50的同学体重作为一个样本不具有代表性,故此选项错误,不合题意;
D.绘制扇形统计图时,要检查各部分所对应的圆心角之和是否等于360度,此选项正确,符合题意.
故选:D
【点睛】
本题考查了抽样调查与全面调查的特点,统计图的特点,抽样调查样本的选择等情况,熟知相关知识并根据题意灵活应用是解题关键.
7、A
【解析】
【分析】
根据总体的定义:表示考察的全体对象;样本的定义:按照一定的抽样规则从总体中取出的一部分个体,样本中个体的数目称为样本容量;个体的定义:总体中每个成员成为个体,进行逐一判断即可.
【详解】
解:A、这600名学生的“中华经典诵读”大赛成绩的全体是总体,故本选项正确,符合题意;
B、50名学生的成绩是总体的一个样本,故本选项错误,不符合题意;
C、每个学生的成绩是个体,故本选项错误,不符合题意;
D、样本容量是50,故本选项错误,不符合题意;
故选A.
【点睛】
本题主要考查了样本,总体,个体和样本容量的定义,解题的关键在于熟知相关定义.
8、B
【解析】
【分析】
用步行到校学生的频数除以学生总数即可求解.
【详解】
解:75÷300=0.25,
故选B.
【点睛】
本题考查了频率的计算方法,熟练掌握频率=频数÷总数是解答本题的关键.
9、B
【解析】
【分析】
先根据“其他”部分所对应的圆心角是36°,算出“其他”所占的百分比,再计算“步行”部分所占百分比即可.
【详解】
解:∵其他部分对应的百分比为:×100%=10%,
∴步行部分所占百分比为1﹣(35%+15%+10%)=40%,
故选:B.
【点睛】
本题考查扇形统计图,熟知“扇形统计图中各部分所占百分比的计算方法和各部分所占百分比间的关系”是解答本题的关键.
10、D
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
解:A、此次调查的总体是某校七年级学生的身高情况,故本选项不合题意;
B、此次调查属于抽样调查,故本选项不合题意;
C、此次调查的个体是每一名七年级学生的身高情况,故本选项不合题意;
D、样本容量是50.故本选项符合题意.
故选:D.
【点睛】
本题考查了数据的收集,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小,样本容量是样本中包含的个体的数目,不能带单位.
二、填空题
1、
【解析】
【分析】
利用A的人数除以所占总数的百分比求出总数,再求出D的百分数,再求对应角度即可得结论.
【详解】
解:由题意总数(本),
∵D占,
∴圆心角,
故答案为:.
【点睛】
本题考查条形统计图,条形统计图等知识,解题的关键是知道圆心角=360°×百分比.
2、 体育运动 10
【解析】
【分析】
(1)从统计表中直接通过比较即可得到.
(2)利用统计表,找到对音乐感兴趣的人数,再用对音乐感兴趣的人数除以全班人数,求出对应的百分比.
【详解】
解:从统计表分析人数可得到结论.由表可得:
(1)体育运动小组人数最多,所以全班同学最感兴趣的课外活动项目是体育运动;
(2)对音乐感兴趣的人数是10,占全班人数的百分比是10÷50=.
故答案为:(1)体育运动;(2)10,
【点睛】
本题主要是统计表的相关知识,如何读懂统计表,从统计表获取信息是关键.
3、 抽样调查 抽样调查 全面调查 抽样调查 全面调查 抽样调查
【解析】
略
4、0.7
【解析】
【分析】
根据频率=频数÷总数,求解即可.
【详解】
这组数据的频率63÷90=0.7,
故答案为:0.7.
【点睛】
本题考查了频率的计算公式,解答本题的关键是掌握公式:频率=频数÷总数.
5、46.8°
【解析】
【分析】
利用占总体的百分比是,则这部分的圆心角是360度的,即可求出结果.
【详解】
解:该部分所对扇形圆心角为:.
故答案为:.
【点睛】
本题考查扇形统计图中扇形所对圆心角的度数与百分比的关系,熟练掌握扇形所对圆心角的计算方法是解题关键.
三、解答题
1、图(2)可能是自来水公司制作的.
【解析】
【分析】
根据两个折线统计图分析其涨价的幅度与基数后确定答案即可.
【详解】
解:(1)图是从1.46元的基础上连续增长3次,远远超出了1.5元,达到了2.53元;
(2)图是从1.46元的基础上连续增长3次,还没有达到5元,
综上,自来水公司向物价部门申请涨价应选择(2),
【点睛】
考查了折线统计图的知识,能够正确的比较两个统计图是解答本题的关键,难度不大.
2、(1)见解析;(2)见解析;(3)见解析
【解析】
【分析】
(1)分析题意,根据题目信息,即可回答;
(2)结合(1)中调查的目的、问题和对象,选择合适的调查方式即可制定合理的调查方案;
(3)根据抽样调查的特点,写一份调查报告即可.
【详解】
(1)调查的目的:帮助气球生产厂家确定各种颜色气球的生产比例;
问题:调查周围的人喜欢气球吗?如果喜欢,那么喜欢什么颜色的气球?
对象:接受调查的人可选择抽样调查的调查方式;
样本的选取:可根据自己的想法和具体情况选择合适的样本(此答案不唯一,只要合理即可);调查所得数据的处理:统计调查所得数据,计算出喜欢气球的人数和喜欢各种颜色气球的人数,然后计算比例;
(2)结合(1)中信息即可制定合理的调查方案,如:
问卷调查表:
你喜欢的气球颜色是什么?(在相应颜色下面画“√”) | |||||||
红 | 橙 | 黄 | 绿 | 青 | 蓝 | 紫 | 其他 |
|
|
|
|
|
|
|
|
简要说明:在学校每个班里挑选学号为3的倍数的同学,然后让这些人填写《问卷调查表》,然后统计每种颜色所占比例,形成扇形统计图,即可确定各种颜色气球生产比例;
(3)抽样调查的一般步骤包括:1、搜集统计资料,2、调查方案设计,3、实施调查过程,4、数据处理分析,5、提写调查报告;
抽样调查的注意点:1.随机取样,2.取样具有代表性,3.若样本由具有明显不同特征的部分组成,应按比例从各部分抽样;
根据抽样调查的特点,自己写一份调查报告即可.
【点睛】
本题考查了调查的目的、问题、对象以及普查和抽样调查的概念及应用.在实际问题中体会普查和抽样调查的特点及应用情景.能够运用所学知识分析、解決数学问题和实际问题.
3、(1)该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%;(2)见解析;(3)小明应购进A种报纸20份,B种报纸50份,C种报纸30份
【解析】
【分析】
(1)用A,C报纸的销售量分别除以三种报纸销售量之和,然后求解即可;
(2)由(1)的结果绘制扇形统计图;
(3)用100分别乘以三种报纸所占的百分比即可求得结果.
【详解】
解:(1),.
∴ 该天A、C报纸的销售量各占这三种报纸销售量之和的20%和30%.
(2)A、B、C三种报纸销售量的扇形统计图如图所示.
(3)100×20%=20(份),100×50%=50(份),100×30%=30(份).
∴ 小明应购进A种报纸20份,B种报纸50份,C种报纸30份.
【点睛】
本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.
4、(1)10,3;(2)2:0;(3)9或10.
【解析】
【分析】
(1)利用公式即可求出比赛场次,根据比赛表格可得出A的获胜的场次即可
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,根据E的总分可得:a+ b+2c=9①,根据D的总得分可得b+2c+d=12②,根据A的总分可得:b+c+2d+=13③,解方程组,讨论整数解可得出a=1,b=2,c=3,d=4;设m对应的积分为x,当y=6时,b+x+a+b=6,即2+x+1+2=6,解方程即可;
(3)根据C队胜2场,分两种情况:当C、B的结果为2:0时,当C、B的结果为2:1时,分别把得分相加即可.
【详解】
解:(1)∵=10(场),
∴第一组一共进行了10场比赛;
∵每场比赛采用三局两胜制,A、B的结果为2:1,A获胜,A、C的结果为2:0,A获胜,A、E的结果为2:0,A获胜,A、D的结果为1:A负,
∴A队共获胜场3常,
∴ x=3,
故答案为:10,3;
(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,
根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,
根据E的总分可得:a+ b+2c=9①,
根据D的总得分可得b+2c+d=12②,
根据A的总分可得:b+c+2d+=13③,
③-②得d-c=1,
∴d=c+1代入②得b+3c=11,
∴c=,
∴b=2,c=3,
∴d=c+1=4,
∴a=9-2-6=1,
∴a=1,b=2,c=3,d=4,
设m对应的积分为x,
当y=6时,b+x+a+b=6,即2+x+1+2=6,
∴x=1,
∴m处应填0:2;
∴B:C=0:2,
∴C:B=2:0,
∴n处应填2:0;
(3)∵C队胜2场,
∴分两种情况:当C、B的结果为2:0时,
p=a+d+c+b=1+4+3+2=10;
当C、B的结果为2:1时,
p=a+2c+b=1+3×2+2=9;
∴C队总积分p的所有可能值为9或10.
故答案为:9或10.
【点睛】
本题考查比赛应用题,表格信息的收集与处理,四元方程组的解法,列代数式求值,分类讨论思想应用,认真阅读题目,读懂题意,是解题关键.
5、(1)a=4;(2)不能达到
【解析】
【分析】
(1)由频数分布直方图可得4.5~5.0的频数a的值;
(2)先求出该年级这周收集的可回收垃圾的质量的最大值,再乘以单价即可得出答案.
【详解】
解:(1)由频数分布直方图可知4.5~5.0的频数a=4;
(2)∵该年级这周收集的可回收垃圾的质量小于4.5×2+5.0×4+5.5×3+6.0=51.5(kg),
∴该年级这周收集的可回收垃圾被回收后所得金额小于51.5×1.1=56.65(元),
∴该年级这周收集的可回收垃圾被回收后所得金额不能达到60元.
【点睛】
本题主要考查了频数分布表,频数分布直方图,解题的关键在于能够准确读懂题意.
数学八年级下册第十八章 数据的收集与整理综合与测试同步训练题: 这是一份数学八年级下册第十八章 数据的收集与整理综合与测试同步训练题,共19页。
初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评: 这是一份初中数学冀教版八年级下册第十八章 数据的收集与整理综合与测试课后测评,共19页。试卷主要包含了下列说法中正确的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
冀教版第十八章 数据的收集与整理综合与测试课时练习: 这是一份冀教版第十八章 数据的收集与整理综合与测试课时练习,共21页。试卷主要包含了下列调查中,最适合采用全面调查等内容,欢迎下载使用。