![2022年最新冀教版九年级数学下册第三十章二次函数同步训练试卷(无超纲)01](http://img-preview.51jiaoxi.com/2/3/12720690/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版九年级数学下册第三十章二次函数同步训练试卷(无超纲)02](http://img-preview.51jiaoxi.com/2/3/12720690/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新冀教版九年级数学下册第三十章二次函数同步训练试卷(无超纲)03](http://img-preview.51jiaoxi.com/2/3/12720690/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学冀教版九年级下册第30章 二次函数综合与测试课后测评
展开九年级数学下册第三十章二次函数同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列二次函数的图象中,顶点在第二象限的是( )
A. B.
C. D.
2、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
3、下列函数中,随的增大而减小的函数是( )
A. B. C. D.
4、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
5、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
A. B.
C. D.
6、对于二次函数,下列说法正确的是( )
A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
7、如图,二次函数的图象与x轴交于点A、B两点,与y轴交于点C;对称轴为直线,点B的坐标为,则下列结论:①;②;③;④,其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
8、对于抛物线下列说法正确的是( )
A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
9、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
10、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
A.x=-3 B.x=-1 C.x=2 D.x=3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点P(m,n)在对称轴为x=1的函数的图像上,则m-n的最大值为____.
2、抛物线的对称轴是直线,则它的顶点坐标为______
3、二次函数的图像不经过第______象限.
4、已知抛物线与轴交于A、B两点,对称轴与抛物线交于C,与轴交于点D,圆C的半径为1.8,G为圆C上一动点,P为AG的中点,则DP的最大值为_________.
5、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.
三、解答题(5小题,每小题10分,共计50分)
1、已知二次函数y=x2-2x-3的图象为抛物线C.
(1)写出抛物线C的开口方向、对称轴和顶点坐标;
(2)当2≤x≤4时,求该二次函数的函数值y的取值范围;
(3)将抛物线C先向右平移2个单位长度,得到抛物线C1;再将抛物线C1向下平移1个单位长度,得到抛物线C2,请直接写出抛物线C1,C2对应的函数解析式.
2、已知抛物线与x轴有交点,求m的取值范围.
3、已知二次函数y=x2+2x.
(1)写出该二次函数图象的对称轴.
(2)已知该函数图象经过A(x1,y1),B(x2,y2)两个不同的点.
①当x1=3n+4,x2=2n﹣1,且y1=y2时,求n的值.
②当x1>﹣1,x2>﹣1时,求证:(x1﹣x2)(y1﹣y2)>0
4、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.
(1)求抛物线的表达式;
(2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;
(3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.
5、问题呈现:探究二次函数(其中,m为常数)的图像与一次函数的图像公共点.
(1)问题可转化为:二次函数的图像与一次函数______的图像的公共点.
(2)问题解决:在如图平面直角坐标系中画出的图像.
(3)请结合(2)中图像,就m的取值范围讨论两个图像公共点的个数.
(4)问题拓展:若二次函数(其中,m为常数)的图像与一次函数的图像有两个公共点,则m的取值范围为______.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据二次函数的顶点式求得顶点坐标,即可判断.
【详解】
解:A.二次函数的顶点为(1,3),在第一象限,不合题意;
B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;
C.二次函数的顶点为(﹣1,3),在第二象限,符合题意;
D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;
故选:C.
【点睛】
本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
2、C
【解析】
【分析】
由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
【详解】
解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,
故①符合题意;
二次函敞的图象过点,结合图象可得:
在抛物线上,
抛物线的对称轴为:
故②符合题意;
二次函敞的顶点坐标为:结合图象可得:
而
故③不符合题意;
当时,
又由图象可得:时,
解得:
故④符合题意;
综上:符合题意的有:①②④
故选C
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
3、B
【解析】
【分析】
根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
【详解】
A. ,,随的增大而增大,故A选项不符合题意.
B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
D. ,,随的增大而增大,故D选项不符合题意;
故选B.
【点睛】
本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
4、A
【解析】
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
5、C
【解析】
【分析】
此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
【详解】
解:∵抛物线的顶点坐标为 ,
∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
故选:C
【点睛】
此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
6、A
【解析】
【分析】
先将二次函数的解析式化为顶点式,再逐项判断即可求解.
【详解】
解:∵,且 ,
∴二次函数图象开口向下,
∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
B、函数图象的顶点坐标是,故本选项错误,不符合题意;
C、当时,函数有最大值-2,故本选项错误,不符合题意;
∵ ,
∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
故选:A
【点睛】
本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
7、D
【解析】
【分析】
根据二次函数的对称性,以及参数a、b、c的意义即可求出答案.
【详解】
解:∵抛物线的对称轴为x=-1,
所以B(1,0)关于直线x=-1的对称点为A(-3,0),
∴AB=1-(-3)=4,故①正确;
由图象可知:抛物线与x轴有两个交点,
∴Δ=b2-4ac>0,故②正确;
由图象可知:抛物线开口向上,
∴a>0,
由对称轴可知:−<0,
∴b>0,故③正确;
当x=-1时,y=a-b+c<0,故④正确;
所以,正确的结论有4个,
故选:D.
【点睛】
本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质.
8、D
【解析】
【分析】
根据二次函数的性质对各选项分析判断即可得解.
【详解】
解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
∴A选项不正确;
由抛物线,可知其最小值为-2,∴B选项不正确;
由抛物线,可知其顶点坐标,∴C选项不正确;
在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
9、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
10、C
【解析】
【分析】
一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
【详解】
解:一元二次方程的两个根分别是和5,
则二次函数图象与轴的交点坐标为、,
根据函数的对称性,函数的对称轴为直线,
故选:C.
【点睛】
本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
二、填空题
1、##0.25
【解析】
【分析】
根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m−n的最大值,本题得以解决.
【详解】
解:∵二次函数y=x2+ax+2的对称轴为x=1,
∴,解得a=-2,
∴二次函数解析式为y=x2-2x+2,
∵点P(m,n)在二次函数y=x2-2x+2的图象上,
∴n=m2-2m+2,
∴m−n=m−(m2-2m+2)=-m2+3m-2=−(m−)2+,
∴当m=时,m−n取得最大值,此时m−n=,
故答案为:.
【点睛】
本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
2、
【解析】
【分析】
根据顶点坐标公式求得横坐标等于2,即可求得的值,进而求得顶点坐标.
【详解】
抛物线的对称轴是直线
即抛物线解析式为
当时,
它的顶点坐标为
【点睛】
本题考查了二次函数的性质,待定系数法求解析式,求得的值是解题的关键.
3、二
【解析】
【分析】
根据题目中的函数解析式和二次函数的性质可以得到该函数图象不经过哪个象限.
【详解】
解:∵y=-x2+4x-1=-(x-2)2+3,
∴该函数图象的顶点坐标为(2,3)且经过点(0,-1),函数图象开口向下,
∴该函数图象不经过第二象限,
故答案为:二.
【点睛】
本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
4、
【解析】
【分析】
如图,连接BG.利用三角形的中位线定理证明DP=BG,求出BG的最大值,即可解决问题.
【详解】
解:如图,连接BG.
∵AP=PG,AD=DB,
∴DP=BG,
∴当BG的值最大时,DP的值最大,
∵,
∴C(5,),B(9,0),
∴BC==,
当点G在BC的延长线上时,BG的值最大,最大值=+,
∴DP的最大值为,
故答案为:.
【点睛】
本题考查二次函数图象上的点的坐标特征,三角形中位线定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
5、y=﹣x2﹣4(答案不唯一)
【解析】
【分析】
根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.
【详解】
解:∵抛物线开口向下且过点(0,﹣4),
∴可以设顶点坐标为(0,﹣4),
故解析式为:y=﹣x2﹣4(答案不唯一).
故答案为:y=﹣x2﹣4(答案不唯一).
【点睛】
本题考查了二次函数图象的性质,是开放型题目,答案不唯一.
三、解答题
1、 (1)开口向上,对称轴为直线,顶点坐标为
(2)
(3),
【解析】
【分析】
(1)将二次函数化为顶点式,由此可得答案;
(2)分别求出时,时的函数值,根据函数的增减性解答;
(3)根据二次函数的平移规律解答.
(1)
解:∵,∴抛物线C的开口向上.
∵,
∴抛物线C的对称轴为直线,顶点坐标为.
(2)
解:当时,y随x的增大而增大;
∵当时,;当时,.
∴函数值y的取值范围是.
(3)
解:抛物线对应的函数解析式为;
抛物线对应的函数解析式为.
【点睛】
此题考查了将二次函数化为顶点式,二次函数的性质,利用函数的增减求出函数值的取值范围,二次函数的平移规律,熟记各知识点是解题的关键.
2、
【解析】
【分析】
根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.
【详解】
∵抛物线与x轴有交点,
∴方程有两个实数根.
解得.
【点睛】
本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
3、 (1)直线x=-1
(2)①-1;②见解析
【解析】
【分析】
(1)直接根据对称轴公式求解;
(2)①将x1和x2代入函数表达式,根据y1=y2得到方程,解之即可;
②将(x1﹣x2)(y1﹣y2)变形为(x1﹣x2)2(x1+x2+2),再根据x1>﹣1,x2>﹣1判断出结果的符号,即可证明.
(1)
解:二次函数y=x2+2x中,
对称轴为直线x==-1;
(2)
①当x1=3n+4,x2=2n﹣1,且y1=y2时,
y1=(3n+4)2+2(3n+4)=9n2+30n+24,
y2=(2n﹣1)2+2(2n﹣1)=4n2-1,
则9n2+30n+24=4n2-1,
解得:n=-5或n=-1;
当时, 不符合题意,舍去,
所以
②(x1﹣x2)(y1﹣y2)
=(x1﹣x2)[(x12+2x1)﹣(x22+2x2)]
=(x1﹣x2)(x12+2x1﹣x22﹣2x2)
=(x1﹣x2)2(x1+x2+2)
∵x1>﹣1,x2>﹣1,
∴x1+x2+2>-1-1+2=0,
又∵A(x1,y1),B(x2,y2)是两个不同的点,
∴x1≠x2,
∴(x1﹣x2)2>0,
∴(x1﹣x2)2(x1+x2+2)>0,
即(x1﹣x2)(y1﹣y2)>0.
【点睛】
本题考查了二次函数的对称轴,解一元二次方程,因式分解的应用,解题的关键是要灵活运用因式分解将式子变形.
4、 (1)
(2)DQ的最大值为,
(3)N点坐标为或或或,见解析
【解析】
【分析】
(1)根据在抛物线上,可得,再由,可得,即可求解;
(2)过点Q作轴交直线AC于点P,令 ,可得,从而得到,进而得到,,再求出直线AC解析式,然后设,则,可得,即可求解;
(3)先求出平移后的抛物线为.然后分四种情况讨论,即可求解.
(1)
解:∵在抛物线上,
∴,
∵
∴,
将代入中得,,
∴抛物线的表达式为:;
(2)
解:过点Q作轴交直线AC于点P,如图:
当 时,,
解得: ,
∴,即OC=4,
∵OA=4,
∴,
∴,
在Rt△PQD中,,
由、得直线AC解析式为:,
设,则,
∵
∴
∴
∴当时,DQ的最大值为,此时.
(3)
解:存在,N点坐标为或或或.
设平移后满足条件的抛物线为;
∵抛物线过点,∴
∴抛物线沿射线AB的方向平移,设抛物线沿直线平移,
∴抛物线与抛物线的的顶点均在直线上;
∴由直线过点得,,解得;
由直线过得,,则,
又∵,∴,
∴,或(因为对称轴在不满足沿射线AB平移,舍去)
∴,,平移后的抛物线为.
∴对称轴为y轴,
即点M在y轴上,
当四边形ABNM为菱形,点N在x轴的上方时,
∵,.
∴;
当四边形ABN1M1为菱形,点N在x轴的下方时,
∵,.
∴;
当四边形AB M2 N2为菱形时,点N2在x轴上,则A M2垂直平分B N2,
∴O N2=OB,
∴点N2;
当四边形A M3B N3为菱形,A M3=B M3,.
设O M3=a,则B M3=A M3=4-a,
∴ ,解得: ,
∴ ,
∴点N3;
综上所述,N点坐标为或或或.
【点睛】
本题主要考查了二次函数的图象和性质,与四边形的综合题,抛物线的平移,熟练掌握二次函数的图象和性质,菱形的性质是解题的关键.
5、 (1)
(2)见解析
(3)或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
(4)
【解析】
【分析】
(1)令,整理得:,可以转化为二次函数的图像与一次函数图像的公共点;
(2)先在坐标轴上描出点,再连线即可;
(3)通过数形结合的方式进行分类讨论;
(4)通过数形结合的方式,分当时;当时;注意当时,要使有两个公共点,则满足,求解即可.
(1)
解:令,
整理得:,
可以转化为二次函数的图像与一次函数图像的公共点,
故答案为:;
(2)
解:先在坐标轴上描出点,
再连线即可,如下图:
(3)
解:如图:
当时,与有一个交点,
当时,与有两个交点,
当时,与有一个交点,
综上:或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
(4)
解:如下图:
当时,(其中,m为常数)与有一个交点有一个公共点;
当时,(其中,m为常数)与没有公共点;
要使(其中,m为常数)与有两个公共点,则满足
且,
解得:且,
,
故时,(其中,m为常数)与有两个公共点,
故答案为:.
【点睛】
本题考查了二次函数与一次函数的综合,函数图象的交点问题,解题的关键是利用数形结合、分类讨论、转化的思想进行求解.
初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共24页。
初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共25页。
初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共29页。试卷主要包含了对于抛物线下列说法正确的是等内容,欢迎下载使用。