冀教版九年级下册第30章 二次函数综合与测试复习练习题
展开九年级数学下册第三十章二次函数综合测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
2、抛物线,,的图象开口最大的是( )
A. B. C. D.无法确定
3、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
A. B. C. D.
4、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为( )
A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+1
5、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )
A.y≤3 B.y≤6 C.y≥-3 D.y≥6
6、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )
A.①④ B.③⑤ C.②⑤ D.③④
7、在平面直角坐标系中,将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是( )
A.(4,2) B.(﹣2,2) C.(4,﹣2) D.(﹣2,﹣2)
8、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
A.正方体集装箱的体积,棱长xm
B.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykm
C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
D.高为14m的圆柱形储油罐的体积,底面圆半径xm
9、若点,都在二次函数的图象上,且,则的取值范围是( )
A. B. C. D.
10、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、二次函数y=ax2+bx+4的图象如图所示,则关于x的方程a(x+1)2+b(x+1)=﹣4的根为______.
2、已知点A(x1,y1)、B(x2,y2)为函数y=﹣2(x﹣1)2+3的图象上的两点,若x1<x2<0,则y1_____y2(填“>”、“=”或“<”),
3、抛物线y=x2+2x+的对称轴是直线______.
4、将抛物线y=﹣2x2+3x+1向下平移3个单位,所得的抛物线的表达式是_____.
5、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
三、解答题(5小题,每小题10分,共计50分)
1、已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.
(1)求点C的坐标和抛物线的解析式;
(2)若点P是抛物线上一点,且PB=PC,求点P的坐标;
(3)点Q是抛物线的对称轴l上一点,当QA+QC最小时,求点Q的坐标.
2、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.
(1)求这条抛物线的解析式.
(2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?
3、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%
(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
(2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)
4、如图,隧道的截面由抛物线和长方形构成.长方形的长为,宽为,抛物线的最高点离路面的距离为.
(1)求抛物线的函数表达式;
(2)一大型货车装载设备后高为,宽为.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?
5、已知抛物线与x轴有交点,求m的取值范围.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
2、A
【解析】
【分析】
先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.
【详解】
解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),
∵||<|1|<|-3|,
∴抛物线开口最大.
故选A.
【点睛】
本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.
3、D
【解析】
【分析】
由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
【详解】
解:由已知二次项系数等于1的一个二次函数,
其图象与x轴交于两点(m,0),(n,0),
所以可设交点式y=(x-m)(x-n),
分别代入,,
∴
∵0<m<n<3,
∴0<≤4 ,0<≤4 ,
∵m<n,
∴ab不能取16 ,
∴0<ab<16 ,
故选D
【点睛】
本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
4、D
【解析】
【分析】
由题意知平移后的函数关系式为,进行整理即可.
【详解】
解:由题意知平移后的函数关系式为:,
故选D.
【点睛】
本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.
5、C
【解析】
【分析】
根据图像经过三点求出函数表达式,再根据最值的求法求出结果.
【详解】
解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),
∴,
解得:,
∴函数表达式为y=x2-2x-2,开口向上,
∴函数的最小值为=,即y≥-3,
故选C.
【点睛】
本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.
6、D
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
②由抛物线的开口方向向下可推出a<0;
因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
③由图可知函数经过(-1,0),∴当,,故③正确;
④对称轴为x=,∴,故④正确;
⑤当y=2时,,故⑤错误;
∴正确的是③④
故选:D
【点睛】
二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
(2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
(4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
7、D
【解析】
【分析】
求出抛物线y=x2﹣2x+1的顶点坐标为 ,即可求解.
【详解】
解:∵ ,
∴抛物线y=x2﹣2x+1的顶点坐标为 ,
∴将抛物线y=x2﹣2x+1先向左平移3个单位长度,再向下平移2个单位长度,经过两次平移后所得抛物线的顶点坐标是 .
故选:D
【点睛】
本题主要考查了二次函数图象的平移,熟练掌握二次函数图象平移法则“左加右减,上加下减”是解题的关键.
8、D
【解析】
【分析】
根据题意,列出关系式,即可判断是否是二次函数.
【详解】
A.由题得:,不是二次函数,故此选项不符合题意;
B.由题得:,不是二次函数,故此选项不符合题意;
C.由题得:,不是二次函数,故此选项不符合题意;
D.由题得:,是二次函数,故此选项符合题意.
故选:D.
【点睛】
本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.
9、D
【解析】
【分析】
先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.
【详解】
抛物线的对称轴为直线,
∵,,
当点和在直线的右侧,则,
解得,
当点和在直线的两侧,则,
解得,
综上所述,的范围为.
故选:D.
【点睛】
本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.
10、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
C.由图象可知,当x=1时,y=,故C不符合题意,
D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
故选:D.
【点睛】
本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
二、填空题
1、x=-5或x=0##或
【解析】
【分析】
根据图象求出方程ax2+bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.
【详解】
解:由图可知:二次函数y=ax2+bx+4与x轴交于(-4,0)和(1,0),
∴ax2+bx+4=0的解为:x=-4或x=1,
则在关于x的方程a(x+1)2+b(x+1)=-4中,
x+1=-4或x+1=1,
解得:x=-5或x=0,
即关于x的方程a(x+1)2+b(x+1)=-4的解为x=-5或x=0,
故答案为:x=-5或x=0.
【点睛】
本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.
2、<
【解析】
【分析】
找到二次函数对称轴,根据二次函数的增减性即可得出结论.
【详解】
解:∵y=﹣2(x﹣1)2+3,
∴抛物线y=﹣2(x﹣1)2+3的开口向下,对称轴为x=1,
∴在x<1时,y随x的增大而增大,
∵x1<x2<0,
∴y1<y2.
故答案为:<.
【点睛】
本题考查二次函数的增减性,掌握其增减规律,找到对称轴是解本题关键.
3、x=﹣1
【解析】
【分析】
抛物线的对称轴方程为: 利用公式直接计算即可.
【详解】
解:抛物线y=x2+2x+的对称轴是直线:
故答案为:
【点睛】
本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.
4、
【解析】
【分析】
根据向下平移,纵坐标要减去3,即可得到答案.
【详解】
解:抛物线向下平移3个单位,
抛物线的解析式为.
故答案为:.
【点睛】
主要考查了函数图象的平移,解题的关键是要求熟练掌握平移的规律:左加右减,上加下减.
5、
【解析】
【分析】
(1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
【详解】
(1)解:,
故答案为:.
(2)当 时,
当时,
∴ 与的大小关系是,
故答案为:.
【点睛】
本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
三、解答题
1、 (1),
(2)或
(3)
【解析】
【分析】
(1)对于,当时,,求得,解方程组即可得到结论;
(2)根据,,得到,连接,设的中点为,求得,,得到直线的解析式为,设,解方程即可得到结论;
(3)由(1)知,抛物线的对称轴为直线,根据轴对称的性质得到,,当,,三点共线时,最小,即最小,求得直线的解析式为,把代入即可得到结论.
(1)
解:对于,当时,,
,
抛物线为常数,交轴于点和点,
,
解得,
抛物线的解析式为;
(2)
解:,,
,
连接,设的中点为,
,,
直线的解析式为,
,
点在直线上,
设,
点是抛物线上一点,
,
解得,
点的坐标为,或,;
(3)
解:由(1)知,抛物线的对称轴为直线,
点与点关于对称,点在直线上,
,,
当,,三点共线时,最小,即最小,
设直线的解析式为,
,
解得,
直线的解析式为,
把代入得,,
,
当最小时,求点的坐标.
【点睛】
本题是二次函数的综合题,考查了待定系数法求函数的解析式以及二次函数的性质,轴对称最短路线问题,解题的关键是熟练掌握待定系数法求函数的解析式.
2、 (1)
(2)一艘宽为4米,高出水面3米的货船,能从桥下通过,理由见解析.
【解析】
【分析】
(1)根据抛物线经过原点,可设抛物线为再把把代入抛物线的解析式,利用待定系数法求解抛物线的解析式即可;
(2)把代入抛物线的解析式求解函数值,再与3米进行比较,即可得到答案.
(1)
解:根据题意抛物线经过了原点,设抛物线为:
把代入抛物线的解析式得:
解得:
所以抛物线为:
(2)
解:因为一艘宽为4米,高出水面3米的货船行驶时航线在正中间,
所以当时,
而
所以一艘宽为4米,高出水面3米的货船,能从桥下通过.
【点睛】
本题考查的是二次函数的实际应用,熟练的把实际生活中的问题化为数学问题,建立数学模型是解本题的关键.
3、 (1)24元;
(2)当m=35时,w最大=7260元.
【解析】
【分析】
(1)设去年这种水果的批发价为x元/千克,今年的销量-去年的销量=1000列方程解方程即可;
(2)设每千克的平均销售价为m元,根据总利润=每千克利润×销量列函数关系式w=(m-24)(300+)配方为顶点式,利用函数性质求即即可.
(1)
解:设去年这种水果的批发价为x元/千克,
根据题意得:,
整理得:3000-2400=24x,
解得x=25,
经检验符合题意,
元;
(2)
解:设每千克的平均销售价为m元,
w=(m-24)(300+),
=,
=,
∵a=-60<0,
抛物线开口向下,函数有最大值,
当m=35时,w最大=7260元.
【点睛】
本题考查列分式方程解应用题,列二次函数解应用题,掌握列分式方程解应用题的方法与步骤,列二次函数解应用题方法是解题关键.
4、 (1)
(2)这辆货车能安全通过,理由见解析
【解析】
【分析】
(1)根据题意得: , ,抛物线的顶点坐标为点 ,从而得到点 ,设抛物线的函数表达式为 ,把点代入,即可求解;
(2)根据题意得:当 时, ,即可求解.
(1)
解:∴ ,
设抛物线的函数表达式为 ,
∴ ,解得: ,
∴抛物线的函数表达式为;
(2)
解:这辆货车能安全通过,理由如下:
根据题意得:当 时,
,
∴这辆货车能安全通过.
【点睛】
本题主要考查了二次函数的实际应用,明确题意,准确得到函数关系式是解题的关键.
5、
【解析】
【分析】
根据抛物线与轴有交点转化为当时,方程有两个实数根,根据一元二次方程根的判别式大于或等于0,解不等式求解即可.
【详解】
∵抛物线与x轴有交点,
∴方程有两个实数根.
解得.
【点睛】
本题考查了抛物线与轴交点问题,转化为一元二次方程根的判别式是解题的关键.一元二次方程 (为常数)的根的判别式,理解根的判别式对应的根的三种情况是解题的关键.当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根.
数学九年级下册第30章 二次函数综合与测试练习: 这是一份数学九年级下册第30章 二次函数综合与测试练习,共36页。
冀教版九年级下册第30章 二次函数综合与测试当堂检测题: 这是一份冀教版九年级下册第30章 二次函数综合与测试当堂检测题,共35页。
初中第30章 二次函数综合与测试练习: 这是一份初中第30章 二次函数综合与测试练习,共26页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和等内容,欢迎下载使用。