开学活动
搜索
    上传资料 赚现金

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数综合训练试题(含答案解析)

    2022年最新精品解析冀教版九年级数学下册第三十章二次函数综合训练试题(含答案解析)第1页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数综合训练试题(含答案解析)第2页
    2022年最新精品解析冀教版九年级数学下册第三十章二次函数综合训练试题(含答案解析)第3页
    还剩25页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版第30章 二次函数综合与测试测试题

    展开

    这是一份冀教版第30章 二次函数综合与测试测试题,共28页。试卷主要包含了对于二次函数,下列说法正确的是,若二次函数y=ax2+bx+c,已知点,若点A等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为(       A. B.C. D.2、函数向左平移个单位后其图象恰好经过坐标原点,则的值为(       A. B. C.3 D.或33、二次函数yax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是(  )A. B.y≤2 C.y<2 D.y≤34、对于二次函数,下列说法正确的是(       A.若,则yx的增大而增大 B.函数图象的顶点坐标是C.当时,函数有最大值-4 D.函数图象与x轴有两个交点5、若二次函数yax2bxca≠0)的图象经过点(﹣1,1),(4,6),(3,1),则(       A.y≤3 B.y≤6 C.y≥-3 D.y≥66、已知点在二次函数的图象上,当时,.若对于任意实数都有,则的范围是(       ).A. B. C. D.7、二次函数yax2+bx+c的图像全部在x轴的上方,下列判断中正确的是(       A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>08、将抛物线yx2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为(  )A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+39、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2x-1的图象上,则y1y2y3的大小关系是(       A.y1y2><y3 B.y2y1y3 C.y3y1y2 D.y3y2y110、二次函数的图象如图所示,则下列结论正确的是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、抛物线yx2+2x的对称轴是直线______.2、把二次函数的图象关于轴对称后得到的图象的函数关系式为_________.3、如图,函数的图象过点,下列判断:处的函数值相等.其中正确的是__(只填序号).4、二次函数的对称轴是________.5、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.三、解答题(5小题,每小题10分,共计50分)1、如图1,抛物线yax2+bx+ca>0)的顶点为M,平行于x的直线与抛物线交于点AB,若△AMB为等腰直角三角形,则抛物线上AB两点之间的部分与线段AB围成的图形称为该抛物线对应的“准碗形”,线段AB称为碗宽,点M到线段AB的距离称为碗高.(1)抛物线yx2对应的碗宽为       (2)抛物线yax2a>0)对应的碗宽为      ;抛物线yax﹣2)2+3(a>0)对应的碗高为      (3)已知抛物线yax2﹣4axa>0)对应的碗高为3.①求碗顶M的坐标;②如图2,将“准碗形AMB”绕点M顺时针旋转30°得到“准碗形”.过点x轴的平行线交准碗形于点C,点P是线段上的动点,过点Py轴的平行线交准碗形A'MB'于点Q.请直接写出线段PQ长度的最大值.2、在平面直角坐标系中,抛物线轴于点,点,(点在点的左侧),点是抛物线上一点.(1)若时,用含的式子表示(2)若的外接圆为,求点的坐标和弧的长;(3)在(1)的条件下,若有最小值,求此时的抛物线解折式3、已知二次函数的图象经过点(1)求二次函数的表达式;(2)求二次函数的图象与轴的交点坐标.4、如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线,如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m.(1)建立适当平面直角坐标系,确定抛物线解析式;(2)求水流的落地点D到水枪底部B的距离.5、已知直线y1kx+1(k>0)与抛物线y2x2(1)当﹣4≤x≤3时,函数y1y2的最大值相等,求k的值;(2)如图①,直线y1kx+1与抛物线y2x2交于AB两点,与y轴交于F点,点C与点F关于原点对称,求证:SACFSBCFACBC(3)将抛物线y2x2先向上平移1个单位,再沿直线y1kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1kx+1分别交x轴,y轴于EF两点,交新抛物线于MN两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究tk的关系. -参考答案-一、单选题1、B【解析】【分析】根据增长率问题的计算公式解答.【详解】解:第2年的销售量为第3年的销售量为故选:B【点睛】此题考查了增长率问题的计算公式a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.2、C【解析】【分析】把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.【详解】解:向左平移个单位后的函数解析式为函数图象经过坐标原点,解得故选:C.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.3、A【解析】【分析】根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案【详解】解:∵二次函数yax2+bx+c图象的对称轴为,与轴的交点为,轴的一个交点为∴另一交点为设抛物线解析式为,将点代入得解得抛物线解析式为则顶点坐标为x>0时,函数值y的取值范围是故选A【点睛】本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.4、A【解析】【分析】先将二次函数的解析式化为顶点式,再逐项判断即可求解.【详解】解:∵,且∴二次函数图象开口向下,∴A、若,则yx的增大而增大,故本选项正确,符合题意;B、函数图象的顶点坐标是,故本选项错误,不符合题意;C、当时,函数有最大值-2,故本选项错误,不符合题意;∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.5、C【解析】【分析】根据图像经过三点求出函数表达式,再根据最值的求法求出结果.【详解】解:∵二次函数yax2bxc经过(﹣1,1),(4,6),(3,1),解得:∴函数表达式为yx2-2x-2,开口向上,∴函数的最小值为=,即y≥-3,故选C【点睛】本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.6、A【解析】【分析】先根据二次函数的对称性求出b的值,再根据对于任意实数x1x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.【详解】解:∵当x1=1、x2=3时,y1=y2∴点A与点B为抛物线上的对称点,b=-4;∵对于任意实数x1x2都有y1+y2≥2,∴二次函数y=x2-4x+n的最小值大于或等于1,c≥5.故选:A.【点睛】本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+cabc为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1y1),P2(x2y2),若有y1=y2,则P1P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:7、D【解析】【分析】由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出,此题得解.【详解】解:二次函数的图象全部在轴的上方,故选:D.【点睛】本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.8、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【详解】解:将抛物线yx2先向右平移3个单位长度,得:y=(x﹣3)2再向上平移5个单位长度,得:y=(x﹣3)2+5,故选:B【点睛】本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.9、B【解析】【分析】由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.【详解】解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,yx的增加而增大∴点A对称的点的坐标为故选B.【点睛】本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.10、D【解析】【分析】首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定异号,然后再根据二次函数与轴的交点可以确定【详解】解:抛物线开口向上,对称轴在轴右侧,异号,抛物线与轴交于正半轴,故选:【点睛】此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数①二次项系数决定抛物线的开口方向和大小.时,抛物线向上开口;当时,抛物线向下开口.②一次项系数和二次项系数共同决定对称轴的位置.同号时(即,对称轴在轴左; 当异号时(即,对称轴在轴右.(简称:左同右异)③.常数项决定抛物线与轴交点. 抛物线与轴交于二、填空题1、x=﹣1【解析】【分析】抛物线的对称轴方程为: 利用公式直接计算即可.【详解】解:抛物线yx2+2x的对称轴是直线: 故答案为:【点睛】本题考查的是抛物线的对称轴方程,掌握“抛物线的对称轴方程的公式”是解本题的关键.2、【解析】【分析】函数的图象关于y轴对称后的顶点坐标为(-1,0),然后根据顶点式写出解析式.【详解】解:的顶点坐标是(1,2),由于(1,2)关于y轴的对称点为(-1,2),所以得到的图象的函数解析式是故答案为【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.3、①③④【解析】【分析】根据抛物线开口方向,对称轴以及与轴的交点即可判断①;根据的符号得出,即可得到,根据时,得到,即可得到,即可判断②;根据抛物线与一元二次方程的关系即可判断③;根据抛物线的对称性即可判断④.【详解】解:抛物线开口向下,抛物线交轴于正半轴,,故①正确,时,,则,故②错误,的图象过点方程的根为方程的根为,故③正确;的图象过点抛物线的对称轴为直线处的函数值相等,故④正确,故答案为:①③④.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当同号时(即,对称轴在轴左;当异号时(即,对称轴在轴右;常数项决定抛物线与轴交点:抛物线与轴交于;△决定抛物线与轴交点个数:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.4、直线【解析】【分析】抛物线的对称轴为直线 根据抛物线的顶点式可直接得到答案.【详解】解:二次函数的对称轴是直线(或轴)故答案为:直线【点睛】本题考查的是二次函数的对称轴方程,掌握“抛物线的顶点式”是解本题的关键.5、【解析】【分析】如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.【详解】解:建立平面直角坐标系如图:根据题意可知,点A的坐标为(3,10),点C的坐标为(5,0),抛物线的对称轴为直线x=3.5,设抛物线的的解析式为yax2+bx+c,把上面信息代入得,解得,抛物线解析式为:代入得,故答案为:【点睛】本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.三、解答题1、 (1)4(2)(3)(2,-3),【解析】【分析】(1)根据碗宽的定义以及等腰直角三角形的性质可以假设Bmm),代入抛物线的解析式,求出AB两点坐标即可解决问题.(2)利用(1)中方法可求碗宽,根据等腰直角三角形可知碗高是碗宽的一半.(3)①由碗高为3求出a,再求顶点坐标即可;②作QSBPS,找到PQQS的关系后即可解决问题.(1)解:根据碗宽的定义以及等腰直角三角形的性质可以假设Bmm).Bmm)代入yx2,得,解得,m=2或0(舍去),A(﹣2,2),B(2,2),AB=4,即碗宽为4;故答案为:4.(2)解:类似(1)设Bnn),代入ya x2,得,解得,n或0(舍去),AB,即碗宽为抛物线yax﹣2)2+3是由抛物线yax2平移得到的,所以,它们的碗宽一样为,根据等腰直角三角形的性质,可知可知碗高是碗宽的一半,即故答案为:(3)解:①抛物线yax2﹣4axa>0)对应的碗高为3.由(2)可知解得,,抛物线解析式为,化成顶点式为M的坐标为(2,-3);②如图,作QSBPS,由旋转可知∠PBO=30°,因为过点Py轴的平行线交准碗形A'MB'于点QPQOB∴∠QPB=60°,∠PQS=30°,PQ=2PSQS等于碗高时,QS最大,此时PQ长度的最大,由(2)可知QS最大为3,则PQ长度的最大值为【点睛】本题考查了二次函数的性质和直角三角形的性质,解题关键是准确理解题意,熟练运用二次函数的性质和直角三角形的性质求解.2、 (1)(2)E点坐标为,弧长为(3)【解析】【分析】(1)将代入,计算求解即可;(2)将代入,得到,然后将解析式因式分解,得到点坐标分别为;如图,在直角坐标系中作,连接;点中点,坐标为;点中点,坐标为,有,得的值,进而可求出点坐标;,知,AE= ,根据求解即可;(3),知最小时,有,解得值,故可得值,进而可得出抛物线的解析式.(1)解:将代入∴用含的式子表示(2)解:将代入点坐标分别为如图,作,连接∴点中点,坐标为;点中点,坐标为点坐标为∴AE= 的坐标为的长为(3)解:由题意知最小时,有解得【点睛】本题考查了代数式,待定系数法求二次函数解析式,二次函数最值,三角形相似的判定与性质,三角形的外接圆,弧长等知识.解题的关键与难点在于对知识的熟练掌握并能灵活运用.3、 (1)yx 2+ x(2)0,﹣).【解析】【分析】1)利用待定系数法,把代入函数解析式即可求;2)令x0,求得y的值即可得出结论.(1)解:∵二次函数yax+122的图象经过点(﹣56),a(﹣5+1226解得:a∴二次函数的表达式为:yx+122,即yx 2+ x(2)解:令x0,则y×(0+122=﹣∴二次函数的图象与y轴的交点坐标为(0,﹣).【点睛】本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.4、 (1)图解析,y=﹣1.6(x﹣1)2+3.6(2)水流的落地点D到水枪底部B的距离为2.5m.【解析】【分析】(1)依题意,建立直角坐标系(见详解1),依据二次函数的顶点式进行求解即可;(2)结合(1)中的解析式,将距离问题转变为二次函数与横坐标轴的交点问题,求解;(1)由题知,如图,以BD所在直线为x轴、AB所在直线为y轴建立直角坐标系,由题意知,抛物线的顶点为、点设抛物线的解析式为将点代入,得:则抛物线的解析式为(2)结合(1),可知水流的落地点D到水枪底部B的距离转换为,与横坐标的交点问题;∴ 当y=0时,有解得:(舍),答:水流的落地点D到水枪底部B的距离为2.5m【点睛】本题主要考查二次函数解析式的求解及其实际应用,关键在熟练应用解析结合实际问题;5、 (1)(2)证明见解析(3)【解析】【分析】(1)根据函数图象的性质可知,当时,,有,求解即可;(2)如图,分别过点交点分别为,设两点横坐标分别为,由题意知:;有,故可证(3)平移后的二次函数解析式为,与y轴的交点坐标为可知有相同的纵坐标,可得,解得,知点横纵标,在点一次函数与二次函数相交,有相同的纵坐标,可得,进而可得的关系.(1)解:∵∴根据函数图象的性质可知,当时,解得(2)证明:如图,分别过点交点分别为两点横坐标分别为由题意知:(3)解:由题意知,平移后的二次函数解析式为,与y轴的交点坐标为有相同的纵坐标解得故可知点横纵标∵在点一次函数与二次函数相交,有相同的纵坐标解得【点睛】本题考查了一次函数与二次函数的综合,相似三角形等知识.解题的关键在于灵活运用知识求解. 

    相关试卷

    初中冀教版第30章 二次函数综合与测试练习题:

    这是一份初中冀教版第30章 二次函数综合与测试练习题,共32页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。

    数学九年级下册第30章 二次函数综合与测试综合训练题:

    这是一份数学九年级下册第30章 二次函数综合与测试综合训练题,共30页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试随堂练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共29页。试卷主要包含了二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map