搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷冀教版九年级数学下册第三十章二次函数专题攻克试卷(含答案详解)

    精品试卷冀教版九年级数学下册第三十章二次函数专题攻克试卷(含答案详解)第1页
    精品试卷冀教版九年级数学下册第三十章二次函数专题攻克试卷(含答案详解)第2页
    精品试卷冀教版九年级数学下册第三十章二次函数专题攻克试卷(含答案详解)第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试课堂检测

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课堂检测,共27页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若点,都在二次函数的图象上,且,则的取值范围是( )
    A.B.C.D.
    2、一次函数与二次函数的图象交点( )
    A.只有一个B.恰好有两个
    C.可以有一个,也可以有两个D.无交点
    3、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
    A.若x1+x2<2,则y1>y2B.若x1+x2>2,则y1>y2
    C.若x1+x2<﹣2,则y1<y2D.若x1+x2>﹣2,则y1>y2
    4、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
    给出下列说法:
    ①抛物线与y轴的交点为(0,6);
    ②抛物线的对称轴在y轴的右侧;
    ③抛物线的开口向下;
    ④抛物线与x轴有且只有1个公共点.
    以上说法正确是( )
    A.①B.①②C.①②③D.①②③④
    5、二次函数的自变量与函数值的部分对应值如下表:
    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①②B.③④C.①③D.①②④
    6、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
    A.B.
    C.D.
    7、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为( )
    A.y=2(x+2)2+3B.y=2(x-2)2+3C.y=2(x+2)2-3D.y=2(x-2)2-3
    8、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
    A.1个B.2个C.3个D.4个
    9、抛物线的对称轴是( )
    A.直线B.直线C.直线D.直线
    10、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )
    A.a<4B.a≤4C.a<4且a≠0D.a≤4且a≠0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.
    2、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
    3、某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留宽的门,所有围栏的总长(不含门)为,若要使得建成的饲养室面积最大,则利用墙体的长度为______.
    4、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.
    5、已知二次函数,当时,函数的值是_________.
    三、解答题(5小题,每小题10分,共计50分)
    1、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.
    (1)求日销售量y与时间t的函数表达式.
    (2)哪一天的日销售利润最大?最大利润是多少?
    2、在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=a+bx+1恰好经过A,B,C三点中的两点.
    (1)判断点B是否在直线y=x+m上,并说明理由;
    (2)求a,b的值;
    (3)平移抛物线y=a+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.
    3、已知直线y1=kx+1(k>0)与抛物线y2=x2.
    (1)当﹣4≤x≤3时,函数y1与y2的最大值相等,求k的值;
    (2)如图①,直线y1=kx+1与抛物线y2=x2交于A,B两点,与y轴交于F点,点C与点F关于原点对称,求证:S△ACF:S△BCF=AC:BC;
    (3)将抛物线y2=x2先向上平移1个单位,再沿直线y1=kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1=kx+1分别交x轴,y轴于E,F两点,交新抛物线于M,N两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究t与k的关系.
    4、已知函数(为常数).
    (1)若图象经过点,判断图象经过点吗?请说明理由;
    (2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
    (3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
    5、如图,一名垒球运动员进行投球训练,站在点O开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.
    (1)求抛物线的函数关系式;
    (2)求点O到训练墙AB的距离OA的长度.
    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.
    【详解】
    抛物线的对称轴为直线,
    ∵,,
    当点和在直线的右侧,则,
    解得,
    当点和在直线的两侧,则,
    解得,
    综上所述,的范围为.
    故选:D.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.
    2、B
    【解析】
    【分析】
    联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.
    【详解】
    解:联立一次函数和二次函数的解析式可得:
    整理得:
    有两个不相等的实数根
    与的图象交点有两个
    故选:B.
    【点睛】
    本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.
    3、A
    【解析】
    【分析】
    由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
    【详解】
    解:∵二次函数y=x2﹣2x+m,
    ∴抛物线开口向上,对称轴为x=1,
    ∵x1<x2,
    ∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
    4、C
    【解析】
    【分析】
    根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
    【详解】
    解:根据图表,抛物线与y轴交于(0,6),故①正确;
    ∵抛物线经过点(0,6)和(1,6),
    ∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
    当x0,故①是错误的;
    由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
    由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
    因此④正确的,
    综上所述,正确的有2个,
    故选:B.
    【点睛】
    考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
    9、C
    【解析】
    【分析】
    抛物线的对称轴为:,根据公式直接计算即可得.
    【详解】
    解:,
    其中:,,,

    故选:C.
    【点睛】
    本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
    10、D
    【解析】
    【分析】
    由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.
    【详解】
    解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,
    ∴Δ=42﹣4a×1≥0,且a≠0,
    解得:a≤4,且a≠0.
    故选:D.
    【点睛】
    本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.
    二、填空题
    1、
    【解析】
    【分析】
    由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
    【详解】
    解:由图象可得:抛物线的对称轴为:


    解得:
    故答案为:
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
    2、
    【解析】
    【分析】
    (1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
    【详解】
    (1)解:,
    故答案为:.
    (2)当 时,
    当时,
    ∴ 与的大小关系是,
    故答案为:.
    【点睛】
    本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
    3、14
    【解析】
    【分析】
    设平行于墙体的材料长度为 ,则垂直于墙体的材料长度为 根据题意列出函数关系式,再利用二次函数的性质,即可求解.
    【详解】
    解:设平行于墙体的材料长度为 ,建成的饲养室的总面积为 ,则垂直于墙体的材料长度为 根据题意得:
    建成的饲养室的总面积为 ,
    ∴当 时,建成的饲养室面积最大,
    即此时利用墙体的长度为 .
    故答案为:14
    【点睛】
    本题主要考查了二次函数的应用,明确题意,准确得到等量关系是解题的关键.
    4、75
    【解析】
    【分析】
    根据题意表示出OA25,B25A25的长,由B25C25=8C25A25确定点C25的坐标,代入解析式计算得到答案.
    【详解】
    解:∵正方形OABC的边长为n,点A1,A2,…,An-1为OA的n等分点,点B1,B2,…,Bn-1为CB的n等分点,
    ∴OA25= •n=25,A25B25=n,
    ∵B25C25=8C25A25,
    ∴C25(25,),
    ∵点C25在上,
    ∴,
    解得n=75.
    故答案为:75.
    【点睛】
    本题考查的是二次函数图象上点的特征和正方形的性质,根据正方形的性质表示出点C25的坐标是解题的关键.
    5、-1
    【解析】
    【分析】
    将x的值代入计算即可;
    【详解】
    解:当时
    ==-1
    故答案为:-1
    【点睛】
    本题考查了二次函数的值,正确计算是解题的关键.
    三、解答题
    1、 (1)y=﹣2t+200(1≤t≤80,t为整数)
    (2)第30天的日销售利润最大,最大利润为2450元
    【解析】
    【分析】
    (1)设日销售量y与时间t的函数解析式为y=kt+b(k≠0),将(1,198)、(80,40)代入,得二元一次方程组,解得k和b的值,再代入y=kt+b即可;
    (2)设日销售利润为w,根据日利润等于每千克的利润乘以日销售量可得w=(p-6)y,分两种情况讨论:①当1≤t≤40时,②当41≤t≤80时.
    (1)
    解:设日销售量y与时间t的函数解析式为y=kt+b(k≠0),
    将(1,198)、(80,40)代入,得:
    k+b=19880k+b=40,
    解得:,
    ∴日销售量y与时间t的函数表达式为y=-2t+200(1≤t≤80,t为整数);
    (2)
    解:设日销售利润为w元,则w=(p-6)y,
    ①当1≤t≤40时,
    w=(t+16-6)(-2t+200)=-(t-30)2+2450,
    ∵-<0,
    ∴当t=30时,w有最大值,最大值为2450元;
    ②当41≤t≤80时,
    w=(-t+46-6)(-2t+200)=(t-90)2-100,
    ∵1>0,
    ∴当t≤90时,w随t的增大而减小,
    ∴当t=41时,w有最大值,最大值=(41-90)2-100=2301,
    ∵2450>2301,
    ∴第30天的日销售利润最大,最大利润为2450元.
    【点睛】
    本题考查了二次函数在销售问题中的应用,同时本题还考查了待定系数法求一次函数的解析式,解题关键是根据等量关系写出函数解析式.
    2、 (1)在,见解析
    (2)a=﹣1,b=2
    (3)当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为
    【解析】
    【分析】
    (1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;
    (2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;
    (3)设平移后的抛物线为y=﹣+px+q,其顶点坐标为(,),根据题意得出=,由抛物线y=﹣+px+q与y轴交点的纵坐标为q,即可得出q=-=,从而得出q的最大值.
    (1)
    点B是在直线y=x+m上,理由如下:
    ∵直线y=x+m经过点A(1,2),
    ∴2=1+m,解得m=1,
    ∴直线为y=x+1,
    把x=2代入y=x+1得y=3,
    ∴点B(2,3)在直线y=x+m上;
    (2)
    ∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,
    ∴抛物线只能经过A、C两点,
    把A(1,2),C(2,1)代入y=a+bx+1得,
    解得a=﹣1,b=2;
    (3)
    由(2)知,抛物线为y=﹣+2x+1,
    设平移后的抛物线为y=﹣+px+q,
    ∴顶点坐标为(,),
    ∵其顶点仍在直线y=x+1上,
    ∴=,
    ∴q=-=,
    ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.
    【点睛】
    本题考查了图像与点的关系,待定系数法确定函数解析式,配方法求二次函数最值,熟练掌握待定系数法,灵活配方求最值是解题的关键.
    3、 (1)
    (2)证明见解析
    (3)
    【解析】
    【分析】
    (1)根据函数图象的性质可知,当时,, ,,有,求解即可;
    (2)如图,分别过点作交点分别为,设两点横坐标分别为,由题意知:,, ,,;有,,,,故可证;
    (3)平移后的二次函数解析式为,与y轴的交点坐标为,可知,有相同的纵坐标,可得,解得,知点横纵标,在点一次函数与二次函数相交,有相同的纵坐标,可得,进而可得的关系.
    (1)
    解:∵,
    ∴根据函数图象的性质可知,当时,,


    解得.
    (2)
    证明:如图,分别过点作交点分别为

    设两点横坐标分别为,
    由题意知:
    ∴,


    ∵,


    ∴.
    (3)
    解:由题意知,平移后的二次函数解析式为,与y轴的交点坐标为,


    ∴有相同的纵坐标

    解得
    故可知点横纵标
    ∵在点一次函数与二次函数相交,有相同的纵坐标

    解得.
    【点睛】
    本题考查了一次函数与二次函数的综合,相似三角形等知识.解题的关键在于灵活运用知识求解.
    4、 (1)经过,理由见解析
    (2)n=﹣m2﹣6m.
    (3)4或6
    【解析】
    【分析】
    (1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
    (2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
    (3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
    (1)
    解:经过,
    把点(﹣2,4)代入y=x2+bx+3b中得:
    4﹣2b+3b=4,
    解得b=0,
    ∴此函数表达式为:y=x2,
    当x=2时,y=4,
    ∴图象经过点(2,4);
    (2)
    解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
    ∴﹣=m,=n,
    ∴b=﹣2m,
    把b=﹣2m代入=n得n==﹣m2﹣6m.
    即n关于m的函数解析式为n=﹣m2﹣6m.
    (3)
    把x=0代入y=x2+bx+3b得y=3b,
    ∵抛物线不经过第三象限,
    ∴3b≥0,即b≥0,
    ∵y=x2+bx+3b=(x+)2﹣+3b,
    ∴抛物线顶点(﹣,﹣+3b),
    ∵﹣≤0,
    ∴当﹣+3b≥0时,抛物线不经过第三象限,
    解得b≤12,
    ∴0≤b≤12,﹣6≤﹣≤0,
    ∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
    把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
    把x=1代入y=x2+bx+3b得y=1+4b,
    当36﹣3b﹣(﹣+3b)=16时,
    解得b=20(不符合题意,舍去)或b=4.
    当1+4b﹣(﹣+3b)=16时,
    解得b=6或b=﹣10(不符合题意,舍去).
    综上所述,b=4或6.
    【点睛】
    本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
    5、 (1)抛物线的关系式为y=-0.01(x-20)2+6;
    (2)点O到训练墙AB的距离OA的长度为(20+10)米.
    【解析】
    【分析】
    (1)根据抛物线的顶点设关系式为y=a(x-20)2+6,再根据点C的坐标可得关系式;
    (2)把y=3代入可得答案.
    (1)
    解:由题意得,顶点E(20,6)和C(0,2),
    设抛物线的关系式为y=a(x-20)2+6,
    ∴2=a(0-20)2+6,
    解得a=-0.01,
    ∴抛物线的关系式为y=-0.01(x-20)2+6;
    (2)
    (2)当y=3时,3=-0.01(x-20)2+6,
    解得x1=20+10,x2=20-10(舍去),
    答:点O到训练墙AB的距离OA的长度为(20+10)米.
    【点睛】
    本题考查了二次函数的实际应用,利用待定系数法得到抛物线的关系式是解题关键.
    x

    -3
    -2
    -1
    0
    1

    y

    -6
    0
    4
    6
    6


    -3
    -2
    -1
    0
    1


    -11
    -3
    1
    1
    -3

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试课时训练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试课时训练,共31页。试卷主要包含了抛物线,,的图象开口最大的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。

    初中数学第30章 二次函数综合与测试同步训练题:

    这是一份初中数学第30章 二次函数综合与测试同步训练题,共30页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map