


初中数学第30章 二次函数综合与测试单元测试同步训练题
展开
这是一份初中数学第30章 二次函数综合与测试单元测试同步训练题,共34页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为( )
A.②③B.②④C.①②③D.②③④
2、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )
A.2B.3C.4D.5
3、下列函数中,随的增大而减小的函数是( )
A.B.C.D.
4、已知二次函数的图象经过,,则b的值为( )
A.2B.C.4D.
5、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2D.若x1+x2>﹣2,则y1>y2
6、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
A.B.C.D.
7、关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根分别为-1和5,则二次函数y=ax2+bx+c(a≠0)的对称轴是( )
A.x=-3B.x=-1C.x=2D.x=3
8、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1B.2C.3D.4
9、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A.B.
C.D.
10、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为万吨,如果2019年至2021年蔬菜产量的年平均增长率为,那么关于的函数解析式为_________.
2、将二次函数的图象先向右平移2个单位,再向下平移2个单位,最终所得图象的函数表达式为______.
3、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
4、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
5、将抛物线y=﹣2x2+3x+1向下平移3个单位,所得的抛物线的表达式是_____.
三、解答题(5小题,每小题10分,共计50分)
1、已知二次函数的图像经过点,,.
(1)求二次函数的表达式;
(2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;
(3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.
2、如图,抛物线y=ax2+bx+4经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点是拋物线在轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,,DC.
(1)求抛物线的函数表达式;
(2)当△BCD的面积与△AOC的面积和为时,求m的值;
(3)在(2)的条件下,若点M是x轴上一动点,点是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,为顶点的四边形是平行四边形.请直接写出点M的坐标;若不存在,请说明理由.
3、已知,如图,直线分别与轴、轴交于点、,抛物线经过点和点,其对称轴与直线交于点.
(1)求二次函数的表达式;
(2)若抛物线(其中)与抛物线的对称轴交于点.与直线交于点,过点作轴交抛物线的对称轴左侧部分于点.
①若点和点重合,求的值;
②若点在点的下方,求、的长(用含有的代数式表示);
③在②的条件下,设的长度为个单位,的长度为个单位,若.直接写出的范围.
4、在平面直角坐标系xOy中,已知抛物线:y=ax2-2ax+4(a>0).
(1)抛物线的对称轴为x= ;抛物线与y轴的交点坐标为 ;
(2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;
(3)若A(m-1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y1>y3>y2,结合图象,求m的取值范围.
5、在平面直角坐标系中,抛物线y=x2﹣4mx+m(m≠0)与y交于点P,将抛物线y=x2﹣4mx+m(m≠0)上点P及点P左边的部分图象沿y轴平移,使点P平移后的对应点Q落在(0,﹣m)处,将平移后的图象与原图象剩余部分合称为图象G
(1)当m=1时,
①求图象G与x轴正半轴的交点坐标;
②图象G对应的函数值y随x增大而减小时x的取值范围为 ;
(2)当图象G的最低点到x轴的距离为时,求m的值.
(3)当过点Q且与y轴垂直的直线与图象G有三个交点时,设另外两个交点为A、B.当Q、A、B三点中,有一点到另外两点的距离之比是1:1时,直接写出线段AB的长度.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据二次函数的图象及性质即可判断.
【详解】
解:由函数图象可知,抛物线开口向上,
∴a>0,
∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
∴抛物线与x轴另一个交点坐标为(3,0),
∴当x>1时,y随x的增大而增大,故①错误;
∵﹣=1,
∴b=﹣2a,
∴2a+b=0,故②正确;
当x=2时,y=4a+2b+c<0,故③正确;
当x=﹣1时,y=a﹣b+c=3a+c=0,
∴c=﹣3a,
∴﹣a>c,
∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
正确的有②③④,
故选:D.
【点睛】
本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
2、B
【解析】
【分析】
由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.
【详解】
解:∵对称轴是直线x=1,且经过点(0,2),
∴左同右异ab<0,c>0,
∴abc<0,所以①正确;
∵抛物线与x轴有2个交点,
∴b2-4ac>0,所以②正确;
∵抛物线对称轴是直线x=1,
∴x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∴9a+3b+c<2,所以③正确;
∵对称轴为x=1,
∴=1,即b=-2a,
∵x=-1时,y=a-b+c>0,
∴3a+c>0,所以④错误;
∵抛物线开口向下,对称轴为x=1,
∴当x<1时,y随x的增大而增大,
∵点(4,y3)关于直线x=1的对称点为(-2,y3),且,
∴y1<y3<y2,所以⑤不正确;
故选:B.
【点睛】
本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数a、b、c的关系是正确判断的前提.
3、B
【解析】
【分析】
根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
【详解】
A. ,,随的增大而增大,故A选项不符合题意.
B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
D. ,,随的增大而增大,故D选项不符合题意;
故选B.
【点睛】
本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
4、C
【解析】
【分析】
由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
【详解】
解: 二次函数的图象经过,,
二次函数图象的对称轴为:
解得:
故选C
【点睛】
本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
5、A
【解析】
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
6、D
【解析】
【分析】
由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
【详解】
解:由已知二次项系数等于1的一个二次函数,
其图象与x轴交于两点(m,0),(n,0),
所以可设交点式y=(x-m)(x-n),
分别代入,,
∴
∵0<m<n<3,
∴0<≤4 ,0<≤4 ,
∵m<n,
∴ab不能取16 ,
∴0<ab<16 ,
故选D
【点睛】
本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
7、C
【解析】
【分析】
一元二次方程的两个根分别是和5,则二次函数图象与轴的交点坐标为、,根据函数的对称性即可求解.
【详解】
解:一元二次方程的两个根分别是和5,
则二次函数图象与轴的交点坐标为、,
根据函数的对称性,函数的对称轴为直线,
故选:C.
【点睛】
本题考查抛物线与轴的交点与对称轴的关系,解题的关键是掌握若抛物线与轴交点的横坐标为和,则抛物线的对称轴为.
8、C
【解析】
【分析】
由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
【详解】
解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,
故①符合题意;
二次函敞的图象过点,结合图象可得:
在抛物线上,
抛物线的对称轴为:
故②符合题意;
二次函敞的顶点坐标为:结合图象可得:
而
故③不符合题意;
当时,
又由图象可得:时,
解得:
故④符合题意;
综上:符合题意的有:①②④
故选C
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
9、C
【解析】
【分析】
逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
【详解】
A、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,A不可能;
B、∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,B不可能;
C、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,C可能;
D、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,D不可能.
故选:C.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据a、b的正负确定一次函数图象经过的象限.
10、C
【解析】
【分析】
根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
【详解】
解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
平移后的抛物线经过三点、、,
故选C
【点睛】
本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
二、填空题
1、
【解析】
【分析】
根据题意可得2020年的蔬菜产量为,2021年的蔬菜产量为,2021年的蔬菜产量为y万吨,由此即可得.
【详解】
解:根据题意可得:2020年的蔬菜产量为,
2021年的蔬菜产量为,
∴,
故答案为: .
【点睛】
题目主要考查二次函数的应用,理解题意,熟练掌握增长率问题是解题关键.
2、y=(x﹣2)2﹣2.
【解析】
【分析】
根据函数图象向右平移自变量减,向下平移常数项减,可得答案.
【详解】
解;将二次函数y=x2的图象向右平移2个单位,再向下平移2个单位后,所得图象的函数表达式是y=(x﹣2)2﹣2,
故答案为:y=(x﹣2)2﹣2.
【点睛】
本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减自变量,上加下减常数项.
3、2.5.
【解析】
【分析】
根据二次函数的对称轴公式直接计算即可.
【详解】
解:∵的对称轴为(min),
故:最佳加工时间为2.5min,
故答案为:2.5.
【点睛】
此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
4、
【解析】
【分析】
设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.
【详解】
解:设抛物线与x轴的两个交点的横坐标为
是的两根,且
两个交点之间的距离为4,
解得: 经检验:是原方程的根且符合题意,
故答案为:
【点睛】
本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.
5、
【解析】
【分析】
根据向下平移,纵坐标要减去3,即可得到答案.
【详解】
解:抛物线向下平移3个单位,
抛物线的解析式为.
故答案为:.
【点睛】
主要考查了函数图象的平移,解题的关键是要求熟练掌握平移的规律:左加右减,上加下减.
三、解答题
1、 (1)
(2)18
(3)1或5
【解析】
【分析】
(1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;
(2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;
(3)观察抛物线的图像可直接得到结果.
(1)
解:(1)设二次函数的表达式为(,,为常数,),
由题意知,该函数图象经过点,,,得
,
解得,
∴二次函数的表达式为.
(2)
解:∵
当y=0时,
解得:x1=1,x2=5
∴点A坐标为(1,0)、点B坐标为(5,0);
当x=0时,y=-5,
∴点C坐标为(0,-5);
把化为y=-(x-3)2+4
∴点P坐标为(3,4);
由题意可画图如下:
∴S四边形ACBP=S△ABP+S△ABC
=
=18,
故答案是:18;
(3)
由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.
故:m=1或.
【点睛】
本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.
2、 (1)
(2)m=
(3)存在,M点的坐标为或或或.
【解析】
【分析】
(1)把,代入中进行求解即可;
(2)如图,连接,求解对称轴为, 由题意可知,,,结合,与,利用即可得到答案;
(3)由(2)得:D点为,再分两种情况讨论,①当BD是平行四边形的一条边时, 如图,当在轴的上方时,由平行四边形的性质与抛物线的性质可得关于抛物线的对称轴对称,重合, 设点, 如图,当在轴的下方时,由平行四边形对角线中点坐标相同得到,, 解方程求解,可得,;②如图,当BD是平行四边形的对角线时, 则,同理可得关于抛物线的对称轴对称,从而可得 从而可得答案.
(1)
(1)把,代入:
,
解得:
∴抛物线表达式为:;
(2)
如图,连接,
∵抛物线解析式为:,且抛物线与y轴交于点C
∴抛物线的对称轴为,
∴OC=4,
∵点D的横坐标为m,
∴,
∵,,
∴AO=1,BO=2,
∴
又∵
∴,
解得:,,
当时,点在对称轴上,不合题意,舍去,所以取,
综上,;
(3)
当时,
D点为,
①当BD是平行四边形的一条边时, 如图,当在轴的上方时,
由平行四边形可得,
关于抛物线的对称轴对称,
重合,
如图,当在轴的下方时,设点, ,
∴,(平行四边形对角线中点坐标相同),
∴,
解得或
∴或,
∴或;
②如图,当BD是平行四边形的对角线时, 则,
∴,关于抛物线的对称轴对称,
,
综上,点的坐标为: 或或或.
【点睛】
主要考查了二次函数的综合,二次函数的性质,平行四边形的性质,掌握以上知识是解题的关键.
3、 (1)
(2)①;②,当时,;当时,;③
【解析】
【分析】
(1)先确定A(-3,0),B(0,3),分别代入解析式,求得b,c的值即可;
(2)①利用对称轴与直线y=x+3的交点,确定点C(-1,2),代入解析式中,求的值;
②分当<m<1和m≥1两种情况解答即可;
③根据得b=m+1,结合前面的解答直接写出的范围即可.
(1)
∵直线分别与轴、轴交于点、,
∴A(-3,0),B(0,3),
把A(-3,0),B(0,3)分别代入解析式,得
,
解得
∴抛物线的解析式为:.
(2)
①∵的对称轴为直线,直线AB的解析式为y=x+3,
∴点、,
∵点和点重合,
∴,
解得:,
∵,
∴.
②∵点、,且点D在点C的下方,
∴CD=2-()=;
∵点D在点C的下方,
∴,
当x=1时,,
∵轴,
∴点F的纵坐标为,
∴=即=0,
解得x== -1±|m-1|,
当时,x=-1+1-m=-m,此时,交点D不满足在C的下方,舍去;
或x=-1-1+m=m-2,
∴EF=;
当m≥1时,x=-1+m-1=m-2,此时,交点D不满足在C的下方,舍去;
或x=-1-m+1=-m,
∴EF=.
③∵,
∴=,
∴=,
∴b=m+1,b=-(m+1)舍去,
∴m≥1.
【点睛】
本题考查了待定系数法确定解析式,一元二次方程的解法,抛物线的平移,熟练掌握抛物线的性质,正确解方程是解题的关键.
4、 (1)1,(0,4)
(2)顶点坐标为(1,0),y=4x2-8x+4
(3)
【解析】
【分析】
(1)根据二次函数对称轴公式,以及与y轴的交点坐标公式;
(2)根据二次函数与x轴交点公式,以及待定系数法求解析式;
(3)先求对称点坐标根据函数的增减性解决本题.
(1)
解:,
当x=0时,y=ax2-2ax+4=4,
所以抛物线的对称轴是直线x=1,抛物线与y轴的交点坐标是(0,4),
故答案为:1,(0,4).
(2)
解:∵抛物线的顶点恰好在x轴上,
∴抛物线的顶点坐标为(1,0),
把(1,0)代入y=ax2-2ax+4得:0=a×12-2a×1+4,
解得:a=4,
∴抛物线的解析式为y=4x2-8x+4.
(3)
解:A(m-1,y1)关于对称轴x=1的对称点为A′(3-m,y1),
B(m,y2)关于对称轴x=1的对称点为B′(2-m,y2),
若要y1>y3>y2,则3-m>m+2>2-m,解得:.
【点睛】
本题考查二次函数图像求对称轴公式,以及与x轴,y轴的交点公式,以及函数的增减性,掌握数形结合的思想是解决本题的关键.
5、 (1)①(,0),(,0);②或
(2)或
(3)或
【解析】
【分析】
(1)①令y=0,得一元二次方程,求出方程的解即可解决问题;②将抛物线解析式配方找出对称轴,结合函数图象解答问题即可;
(2)分两种情况结合图象G的最低点到x轴的距离为列出方程求解即可;
(3)分两种情况求出点A,B的坐标,根据Q、A、B三点中,有一点到另外两点的距离之比是1:1列方程求出mr wfhg,gmf fiy AB的长即可
(1)
①当m=1时,y=x2﹣4mx+m=x2﹣4x+1
令y=0,则x2﹣4x+1=0
解得,,
∴图象G与x轴正半轴的交点坐标(,0),(,0)
②y=x2﹣4x+1=
∴函数y=x2﹣4x+1对称轴为直线x=2,顶点坐标为(2,-3),且开口向上
如图,
∴图象G对应的函数值y随x增大而减小时x的取值范围为或
故答案为:或
(2)
当时,
∵y=x2﹣4mx+m
又∵
∴①当0<m<时,>0,即点Q是图象G的最低点,
∴,不符合题意舍去,
②当m≥时,≤0,即抛物线的顶点是图象G的最低点,
∴-(-4m2+m)=12
解得,,(舍去)
当时,同理可得,
综上,m的值为或
(3)
当时,如图所示,
当时,则有
配方得,
解得,
∴
∴
∵
∴
∴
整理得,
解得,
经检验,是原方程的根,
但m≠0
∴
∴AB=24×81256-2×916=2×8164-7264=34;
当时,如图,
当时,则有
配方得,
解得,
∴
平移后的图象解析式为
当时,则有
解得,x1=4m,x2=0
∴
∴
∵,即
∴
解得,
经检验是原方程的根,
但m≠0
∴
∴
综上所述,AB的长为:或
【点睛】
本题主要考查了二次函数的图象与性质,解题的关键是理解题意,学会用转化的思想思考问题,学会利用参数构建方程确定交点坐标.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试综合训练题,共29页。试卷主要包含了抛物线y=42+3的顶点坐标是,已知点等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试当堂检测题,共35页。
这是一份2020-2021学年第30章 二次函数综合与测试习题,共28页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
