初中冀教版第30章 二次函数综合与测试课堂检测
展开九年级数学下册第三十章二次函数定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、对于抛物线下列说法正确的是( )
A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
2、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为( )
A.②③ B.②④ C.①②③ D.②③④
3、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
4、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
5、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
6、将关于x的二次函数的图像向上平移1单位,得到的抛物线经过三点、、,则、、的大小关系是( )
A. B. C. D.
7、已知二次函数y=ax2+bx+c的图象如图所示,则( )
A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0
C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0
8、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
A.1 B.-1 C. D.无法确定
9、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是( )
A.4 B.2 C.6 D.3
10、如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论正确的是( )
A.ac>0 B.a+b=1 C.4ac﹣b2≠4a D.a+b+c>0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、二次函数(m、c 是常数,且m≠0)的图像过点 A(3,0),则方程mx2+2mx+c=0的根为______.
2、二次函数的图像上横坐标与纵坐标相等的点的坐标为__________.
3、中国跳水队在第三十二届夏季奥林匹克运动会上获得7金5银12枚奖牌的好成绩.某跳水运动员从起跳至人水的运动路线可以看作是抛物线的一部分.如图所示,该运动员起跳点A距离水面10m,运动过程中的最高点B距池边2.5m,入水点C距池边4m,根据上述信息,可推断出点B距离水面______m.
4、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.
5、在平面直角坐标系中,设点P是抛物线的顶点,则点P到直线的距离的最大值为________.
三、解答题(5小题,每小题10分,共计50分)
1、抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点(点A在点B的左侧),且OA=OB,与y轴交于点C.
(1)求证:b=0;
(2)点P是第二象限内抛物线上的一个动点,AP与y轴交于点D.连接BP,过点A作AQ∥BP,与抛物线交于点Q,且AQ与y轴交于点E.
①当a=﹣1时,求Q,P两点横坐标的差;(用含有c的式子来表示)
②求的值.
2、如图,△ADB与△BCD均为等边三角形,延长AD到E,使∠AEC=90°,AD=5,动点M从点B出发,沿BD方向运动,移动速度为1个单位/秒,同时,点N由点D向点C运动,移动速度为2个单位/秒,其中一个到终点,都停止运动,连接AM,CM,MN,NE,设运动时间为t(0≤t≤2.5)
(1)t为何值时,MN∥BC;
(2)连接BN,t为何值时,BNE三点共线;
(3)设四边形AMNE的面积为S,求S与t的函数关系式;
(4)是否存在某一时刻t,使N在∠CMD的角平分线上,若存在,求出t近似值;若不存在,说明理由.
3、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
(3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
4、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
(1)求的值;
(2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
(注:利润=(销售单价-进价)×销售量)
5、已知函数(为常数).
(1)若图象经过点,判断图象经过点吗?请说明理由;
(2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
(3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据二次函数的性质对各选项分析判断即可得解.
【详解】
解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
∴A选项不正确;
由抛物线,可知其最小值为-2,∴B选项不正确;
由抛物线,可知其顶点坐标,∴C选项不正确;
在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
2、D
【解析】
【分析】
根据二次函数的图象及性质即可判断.
【详解】
解:由函数图象可知,抛物线开口向上,
∴a>0,
∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
∴抛物线与x轴另一个交点坐标为(3,0),
∴当x>1时,y随x的增大而增大,故①错误;
∵﹣=1,
∴b=﹣2a,
∴2a+b=0,故②正确;
当x=2时,y=4a+2b+c<0,故③正确;
当x=﹣1时,y=a﹣b+c=3a+c=0,
∴c=﹣3a,
∴﹣a>c,
∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
正确的有②③④,
故选:D.
【点睛】
本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
3、A
【解析】
【分析】
根据二次函数的平移性质得出a不发生变化,即可判断a=1.
【详解】
解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
∴a=1.
故选:A.
【点睛】
此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
4、C
【解析】
【分析】
先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
【详解】
解:抛物线的对称轴为:直线,
∵,
当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
5、B
【解析】
【分析】
直接利用图象设出抛物线解析式,进而得出答案.
【详解】
∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,
∴设抛物线解析式为y=ax2,点B(45,-78),
∴-78=452a,
解得:a=,
∴此抛物线钢拱的函数表达式为,
故选:B.
【点睛】
本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.
6、C
【解析】
【分析】
根据题意求得平移后的二次函数的对称轴以及开口方向,根据三个点与对称轴的距离大小判断函数值的大小即可
【详解】
解:∵关于x的二次函数的图像向上平移1单位,得到的抛物线解析式为,
∴新抛物线的对称轴为,开口方向向上,则当抛物线上的点距离对称轴越远,其纵坐标越大,即函数值越大,
平移后的抛物线经过三点、、,
故选C
【点睛】
本题考查了二次函数的平移,二次函数的性质,二次函数的对称轴直线x=,图象具有如下性质:①当a>0时,抛物线的开口向上,x<时,y随x的增大而减小;x>时,y随x的增大而增大;x=时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线的开口向下,x<时,y随x的增大而增大;x>时,y随x的增大而减小;x=时,y取得最大值,即顶点是抛物线的最高点,掌握二次函数的性质是解题的关键.
7、B
【解析】
【分析】
根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.
【详解】
解:∵抛物线的开口向上,
∴a>0,
∵抛物线的对称轴在y轴的右侧,
∴>0,
∴b<0,
∵抛物线与y轴的交点在x轴的上方,
∴c>0,
∵抛物线与x轴有一个交点,
∴Δ=0,
故选:B.
【点睛】
本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.
8、C
【解析】
【分析】
分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
【详解】
当a>0时,∵对称轴为x=,
当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
∴4a+2-2=4.
∴a=1,
当a<0时,同理可得
y有最大值为2; y有最小值为4a+2,
∴2-(4a+2)=4,
∴a=-1,
综上,a的值为
故选:C
【点睛】
本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
9、C
【解析】
【分析】
将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.
【详解】
解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2
∴函数图象一定经过点C(2,-2)
点C关于x轴对称的点的坐标为(2,2),连接,如图,
∵
∴
故选:C
【点睛】
本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.
10、D
【解析】
【分析】
由抛物线开口方向及抛物线与轴交点位置,即可得出、,进而判断结论A;由抛物线顶点的横坐标可得出,进而判断结论B;由抛物线顶点的纵坐标可得出,进而判断结论C;由、,进而判断结论D.由此即可得出结论.
【详解】
解:A、抛物线开口向下,且与轴正半轴相交,
,,
,结论A错误,不符合题意;
B、抛物线顶点坐标为,,
,
,即,结论B错误,不符合题意;
C、抛物线顶点坐标为,,
,
,结论C错误,不符合题意;
D、,,
,结论D正确,符合题意.
故选:D.
【点睛】
本题考查了二次函数图象与系数的关系以及二次函数的性质,解题的关键是观察函数图象,逐一分析四个选项的正误.
二、填空题
1、3或-5##-5或3
【解析】
【分析】
将A点坐标代入得,解得,原方程变为,因式分解法解方程即可.
【详解】
解:将A点坐标代入得
解得
∴原方程变为
∴
∴或
解得的值为3或
故答案为:3或.
【点睛】
本题考查了解一元二次方程,二次函数与一元二次方程的关系.解题的关键在于理解二次函数与一元二次方程的关系.
2、、
【解析】
【分析】
设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,求出的值即可.
【详解】
解:设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,即,
解得.
故符合条件的点的坐标是:、.
故答案为:、.
【点睛】
本题考查的是二次函数图象上点的坐标特点,解题的关键是掌握即二次函数图象上各点的坐标一定适合此函数的解析式.
3、
【解析】
【分析】
如图建立平面直角坐标系,求出抛物线解析式,再求顶点坐标即可.
【详解】
解:建立平面直角坐标系如图:
根据题意可知,点A的坐标为(3,10),点C的坐标为(5,0),抛物线的对称轴为直线x=3.5,
设抛物线的的解析式为y=ax2+bx+c,把上面信息代入得,
,
解得,,
抛物线解析式为:,
把代入得,;
故答案为:
【点睛】
本题考查了二次函数的应用,解题关键是建立平面直角坐标系,求出二次函数解析式,利用二次函数解析式的性质求解.
4、
【解析】
【分析】
函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大,进而可得自变量x的取值范围.
【详解】
解:由知函数图象的对称轴为直线,图象在对称轴的右侧y随x的增大而增大
∴自变量x的取值范围是
故答案为:.
【点睛】
本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.
5、5
【解析】
【分析】
根据抛物线解析式求出点P坐标,由直线解析式可知直线恒过点B(0,-3),当PB与直线垂直时,点P到直线的距离最大,根据两点间距离公式可出最大距离.
【详解】
解:∵
∴P(3,1)
又直线恒过点B(0,-3),如图,
∴当PB与直线垂直时,点P到直线的距离最大,
此时,
∴点P到直线的距离的最大值为5
故答案为:5.
【点睛】
本题主要考查了二次函数的性质,以及点到直线间的距离,熟练掌握二次函数的性质是解答本题的关键.
三、解答题
1、 (1)见解析
(2)①2;②2.
【解析】
【分析】
(1)利用根与系数的关系即可证明b=0;
(2)①设出P点坐标,然后令c=t²,然后表示出A、B的坐标,先求出直线BP的解析式,即可得到直线AQ的解析式,然后联立抛物线与直线AQ解析式,求出Q点横坐标,即可求解;②同①的方法,令a=-s²,c=t²,设出P点坐标,分别求出D、E的坐标,代入计算即可求解.
(1)
解:设方程ax2+bx+c=0两根为x1,x2,
∵抛物线y=ax2+bx+c(a<0)与x轴交于A,B两点,且OA=OB,
∴x1=-x2,即x1+x2=0,
∵x1+x2=-,
∴-=0,
∵a<0,
∴b=0;
(2)
解:①当a=﹣1时,令c=t2,抛物线的解析式为y=-x2+t2,
解方程-x2+t2=0,得:x1=t,x2=-t,
∴A(-t,0),B(t,0),
设点P的坐标为(p,-p2+ t2),
设直线PB的解析式为y=kx+m,
∴,解得:,
∴直线PB的解析式为y=x+,
∵AQ∥BP,
设直线AQ的解析式为y=x+n,
把A(-t,0)代入得:n=
∴直线AQ的解析式为y=,
联立y=和y=-x2+ t2得:,
整理得:,
解得x1=-t,x2=p+2t,
∴点Q的横坐标为p+2t,
∴Q,P两点横坐标的差为p+2t-p=2t=2;
②令c=t2,a=-s²,抛物线的解析式为y=-s²x2+t2,
解方程-s²x2+t2=0,得:x1=,x2=-,
∴A(-,0),B(,0),C(0,t2),
设点P的坐标为(p,-s²p2+ t2),
同理求得直线PB的解析式为y=x+,
直线AQ的解析式为y=,
令x=0,则y=,
即点E的坐标为(0,),
同理求得直线AP的解析式为y=,
令x=0,则y=,
即点D的坐标为(0,),
∴OD=,OE=,OC=,
∴.
.
【点睛】
本题是二次函数综合题,考查了待定系数法求函数解析式,解一元二次方程,一元二次方程的根与系数的关系等知识点,解答本题的关键是明确题意,找出所求问题需要的条件,画出相应的图形,利用数形结合的思想解答.
2、 (1)当秒;MN∥BC;
(2)t=时,B、N、E三点共线;
(3)S=(0≤t≤2.5);
(4)存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
【解析】
【分析】
(1)根据MN∥BC;证明△MDN为等边三角形,得出DM=DN,即5-t=2t,解方程即可;
(2)根据∠ADE为平角,求出∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,得出DE=,CE=,根据B、N、E三点共线;得出对顶角性质∠BNC=∠END,再证△BCN∽△EDN,得出即,求出DN即可;
(3)过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,先证BD为∠ADC的平分线,得出MG=MH,再证△MGD∽△BFD,,,求出,分别求出S△AMD=,S△MDN=S△DEN=,再根据S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5)即可;
(4)过点M作MK⊥BC于K,根据等边三角形性质可得∠KBM=60°,可求∠KMB=90°-60°=30°,利用30°直角三角形性质得出BK=,利用勾股定理得出MK=MC,根据角平分线定理使N在∠CMD的角平分线上,得出即,整理得:,化为两函数的交点,用描点法画函数图像,列表连线得出量函数图像Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,t≈1.148时,两函数值相等即可.
(1)
解:∵△ADB与△BCD均为等边三角形,AD=5,
∴BD=DC=AD=5,
∴BM=t,DN=2t,
∵MN∥BC;
∴∠NMD=∠DBC=60°=∠MDN,
∴△MDN为等边三角形,
∴DM=DN,即5-t=2t,
解得秒;
∴当秒;MN∥BC;
(2)
解:∵∠ADE为平角,
∴∠CDE=180°-∠ADB-∠BDC=180°-60°-60°=60°,
∵∠CEA=90°,
∴∠DCE=180°-∠CDE-∠CED=180°-60°-90°=30°,
∴DE=,CE=,
∵B、N、E三点共线;
∴∠BNC=∠END,
∵∠BCD=∠CDE=60°,
∴BC∥DE,
∴△BCN∽△EDN,
∴即,
解得DN=,
∴2t=,
解得t=,
∴t=时,B、N、E三点共线;
(3)
解:过点B作BF⊥AE与F,过点M作MG⊥AE于G,MH⊥DC于H,过N作NI⊥DE于I,
∵∠BDA=∠BDC=60°,
∴BD为∠ADC的平分线,
∵MG⊥AE于G,MH⊥DC于H,
∴MG=MH,
∵BF⊥AE,MG⊥AE,
∴BF∥MG,
∴△MGD∽△BFD,
∴,
∵△ABD为等边三角形,BF⊥AD,
∴AF=DF=2.5,
∴BF=,
∵MB=t,
∴MD=5-t,
∴,
解得:,
∴MH=,
∴S△AMD=,
S△MDN=,
∵NI⊥DE,∠CED=90°,
∴NI∥CE,
∴△DNI∽△DCE,
∴即,
∴解得NI=,
∴S△DEN=,
∴S四边形AMNE=S△AMD+S△MDN+S△DEN=++=(0≤t≤2.5);
(4)
过点M作MK⊥BC于K,,过点C作CS∥MN,交DB延长线于S,
∵∠KBM=60°,
∴∠KMB=90°-60°=30°,
∴BK=,MK=,
∴MC,
∵使N在∠CMD的角平分线上,
∴∠CMN=∠DMN,
∵MN∥CS,
∴∠S=∠DMN,∠SCM=∠CMN,
∴∠S=∠SCM,
∴MS=MC,
∵MN∥CS,
∴
∴即,
整理得:,
两函数的交点,
用描点法画函数图像,
列表
t
0
1
1.145
Y=8t3
0
4
8
12.009
t
1
1.15
1.24
Y=5(3t-5)2
20
12.0125
8.19
0
Y=8t3随t增大而增大,Y=5(3t-5)2在0<t≤随t的增大而减小,
∴t≈1.148时,两函数值相等,
∴是存在某一时刻t≈1.148时,使N在∠CMD的角平分线上.
【点睛】
本题考查等边三角形性质,平行线判定,三点共线,对顶角,三角形相似,三角形面积函数,勾股定理,角平分线定理,列表法函数式图形,利用图像求方程的解是解题关键.
3、 (1)
(2)矩形PEDF周长的最大值为,此时点
(3)或
【解析】
【分析】
(1)将点,点,代入解析式,待定系数法求解析式即可;
(2)根据题意转化为求最长时点的坐标,进而求得周长即可;
(3)将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,进而得到平行后的新的抛物线的解析式,根据题意分情况讨论,根据的两个顶点恰好落在新抛物线上时,根据旋转可得若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,进而分类讨论,根据直线与抛物线交点问题,一元二次方程根与系数的关系求解即可.
(1)
解:将点,点,代入解析式,得
解得
抛物线的解析式为:
(2)
四边形是矩形
即
设,则
则矩形PEDF周长为,
当取得最大值时,矩形PEDF周长的最大
设直线的解析式为,将点代入得,
则
解得
直线的解析式为
设,则
即
当时,取得最大值,最大值为
此时矩形PEDF周长为
当时,
即
(3)
由(2)可知,则,
过点作,则,
将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,
则新抛物线解析式为:
即
将绕点Q顺时针方向旋转90°后得到,
轴,
旋转90°后,则轴
则轴,
若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,
轴
设直线为
①当在抛物线上时,如图,
设点,的横坐标分别为,
则
则为的两根
即方程
,
则
即
解得
则
解得
②当在抛物线上时,如图,
设点,的横坐标分别为,
,
则
,
中,
直线的解析式为
设直线的解析式为
则为的两根
即
,
则
即
解得
直线的解析式为
则
解得
当时,
综上所述或
【点睛】
本题考查了待定系数法求二次函数解析式,解直角三角形,旋转的性质,矩形的性质,含30度角的直角三角形的性质,勾股定理,一次函数的平移问题,二次函数的平移问题,一元二次方程根与系数的关系,二次函数求函数值的问题,熟练掌握以上知识并正确的计算是解题的关键.
4、 (1)的值是500;
(2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
【解析】
【分析】
(1)根据利润=(销售单价-进价)×销售量列方程求解即可;
(2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
(1)
解:由题意可得,,
解得:,
答:的值是500;
(2)
解:设利润为w元,
由题意:,
,
∵-10<0,
∴时,取得最大值,此时,
答:当销售单价定为35元时,每月可获得最大利润,最大利润是2250元.
【点睛】
本题考查一元一次方程的应用、二次函数的实际应用,理解题意,根据等量关系正确得到一元一次方程和函数关系式是解答的关键.
5、 (1)经过,理由见解析
(2)n=﹣m2﹣6m.
(3)4或6
【解析】
【分析】
(1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
(2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
(3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
(1)
解:经过,
把点(﹣2,4)代入y=x2+bx+3b中得:
4﹣2b+3b=4,
解得b=0,
∴此函数表达式为:y=x2,
当x=2时,y=4,
∴图象经过点(2,4);
(2)
解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
∴﹣=m,=n,
∴b=﹣2m,
把b=﹣2m代入=n得n==﹣m2﹣6m.
即n关于m的函数解析式为n=﹣m2﹣6m.
(3)
把x=0代入y=x2+bx+3b得y=3b,
∵抛物线不经过第三象限,
∴3b≥0,即b≥0,
∵y=x2+bx+3b=(x+)2﹣+3b,
∴抛物线顶点(﹣,﹣+3b),
∵﹣≤0,
∴当﹣+3b≥0时,抛物线不经过第三象限,
解得b≤12,
∴0≤b≤12,﹣6≤﹣≤0,
∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
把x=1代入y=x2+bx+3b得y=1+4b,
当36﹣3b﹣(﹣+3b)=16时,
解得b=20(不符合题意,舍去)或b=4.
当1+4b﹣(﹣+3b)=16时,
解得b=6或b=﹣10(不符合题意,舍去).
综上所述,b=4或6.
【点睛】
本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
初中冀教版第30章 二次函数综合与测试精品综合训练题: 这是一份初中冀教版第30章 二次函数综合与测试精品综合训练题,共30页。试卷主要包含了抛物线y=42+3的顶点坐标是,二次函数y=a+bx+c,已知平面直角坐标系中有点A等内容,欢迎下载使用。
初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共29页。试卷主要包含了对于抛物线下列说法正确的是等内容,欢迎下载使用。
初中数学冀教版九年级下册第30章 二次函数综合与测试综合训练题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试综合训练题,共28页。试卷主要包含了抛物线,,的图象开口最大的是等内容,欢迎下载使用。