![2022年最新强化训练冀教版九年级数学下册第三十章二次函数重点解析试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12720744/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版九年级数学下册第三十章二次函数重点解析试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12720744/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年最新强化训练冀教版九年级数学下册第三十章二次函数重点解析试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12720744/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年第30章 二次函数综合与测试同步训练题
展开
这是一份2020-2021学年第30章 二次函数综合与测试同步训练题,共34页。试卷主要包含了下列函数中,二次函数是,一次函数与二次函数的图象交点,抛物线,,的图象开口最大的是,二次函数的最大值是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在抛物线的图象上有三个点,,,则、、的大小关系为( )
A. B. C. D.
2、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A. B. C. D.
3、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为( )
A.②③ B.②④ C.①②③ D.②③④
4、下列函数中,二次函数是( )
A.y=﹣3x+5 B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2 D.y=
5、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )
A.14 B.11 C.6 D.3
6、一次函数与二次函数的图象交点( )
A.只有一个 B.恰好有两个
C.可以有一个,也可以有两个 D.无交点
7、抛物线,,的图象开口最大的是( )
A. B. C. D.无法确定
8、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A. B.
C. D.
9、二次函数的最大值是( )
A. B. C.1 D.2
10、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
2、二次函数(m、c 是常数,且m≠0)的图像过点 A(3,0),则方程mx2+2mx+c=0的根为______.
3、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
4、如图,函数的图象过点和,下列判断:
①;
②;
③;
④和处的函数值相等.
其中正确的是__(只填序号).
5、将抛物线y=x2向左平移3个单位所得图象的函数表达式为___.
三、解答题(5小题,每小题10分,共计50分)
1、已知抛物线经过,且顶点在y轴上.
(1)求抛物线解析式;
(2)直线与抛物线交于A,B两点.
①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;
②设直线交x轴于点,线段AB的垂直平分线交y轴于点N,当,时,求点N纵坐标n的取值范围.
2、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于点A(1,0)、B(4,0),与y轴交于点C. 已知点E(0,3)、点F(4,t)(t>3),点M是线段EF上一动点,过M作x轴的垂线交抛物线于点N.
(1)直接写出二次函数的表达式:
(2)若t=5,当MN最大时,求M的坐标;
(3)在点M从点E运动至点F的过程中,若线段MN的长逐渐增大,求t的取值范围
3、如图,正比例函数y1=x与二次函数y2=x2-bx的图象相交于O(0,0),A(4,4)两点.
(1)求 b 的值;
(2)当 y1< y2 时,直接写出 x 的取值范围.
4、如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,平行于x的直线与抛物线交于点A,B,若△AMB为等腰直角三角形,则抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的“准碗形”,线段AB称为碗宽,点M到线段AB的距离称为碗高.
(1)抛物线y=x2对应的碗宽为 ;
(2)抛物线y=ax2(a>0)对应的碗宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碗高为 ;
(3)已知抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.
①求碗顶M的坐标;
②如图2,将“准碗形AMB”绕点M顺时针旋转30°得到“准碗形”.过点作x轴的平行线交准碗形于点C,点P是线段上的动点,过点P作y轴的平行线交准碗形A'MB'于点Q.请直接写出线段PQ长度的最大值.
5、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.
(1)求抛物线的表达式;
(2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;
(3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.
-参考答案-
一、单选题
1、C
【解析】
【分析】
把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
【详解】
解:把三个点,,的横坐标代入解析式得,
;;;
所以,,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
2、B
【解析】
【分析】
由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
【详解】
解:由题意知,平移后的抛物线解析式为
将代入解析式得,与A中点坐标不同,故不符合要求;
将代入解析式得,与B中点坐标相同,故符合要求;
将代入解析式得,与C中点坐标不同,故不符合要求;
将代入解析式得,与D中点坐标不同,故不符合要求;
故选B.
【点睛】
本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
3、D
【解析】
【分析】
根据二次函数的图象及性质即可判断.
【详解】
解:由函数图象可知,抛物线开口向上,
∴a>0,
∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
∴抛物线与x轴另一个交点坐标为(3,0),
∴当x>1时,y随x的增大而增大,故①错误;
∵﹣=1,
∴b=﹣2a,
∴2a+b=0,故②正确;
当x=2时,y=4a+2b+c<0,故③正确;
当x=﹣1时,y=a﹣b+c=3a+c=0,
∴c=﹣3a,
∴﹣a>c,
∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
正确的有②③④,
故选:D.
【点睛】
本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
4、B
【解析】
【分析】
根据二次函数的定义逐个判断即可.
【详解】
解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
B.是二次函数,故本选项符合题意;
C.是一次函数,不是二次函数,故本选项不符合题意;
D.不是二次函数,故本选项不符合题意;
故选:B.
【点睛】
本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
5、B
【解析】
【分析】
首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
【详解】
解:,
抛物线顶点的坐标为,
,
点的横坐标为,
把代入,得到,
,
.
故选:B.
【点睛】
本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
6、B
【解析】
【分析】
联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.
【详解】
解:联立一次函数和二次函数的解析式可得:
整理得:
有两个不相等的实数根
与的图象交点有两个
故选:B.
【点睛】
本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.
7、A
【解析】
【分析】
先令x=1,求出函数值,然后再比较二次项系数的绝对值的大小即可解答.
【详解】
解:当x=1时,三条抛物线的对应点是(1,)(1,-3),(1,1),
∵||<|1|<|-3|,
∴抛物线开口最大.
故选A.
【点睛】
本题主要考查了二次函数图象的性质,掌握二次函数解析式的二次项系数的绝对值越小,函数图象的开口越大.
8、D
【解析】
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
9、D
【解析】
【分析】
由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
【详解】
解:由图象的性质可知,在直线处取得最大值
∴将代入中得
∴最大值为2
故答案为:2.
【点睛】
本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
10、C
【解析】
【分析】
由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
【详解】
解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,
故①符合题意;
二次函敞的图象过点,结合图象可得:
在抛物线上,
抛物线的对称轴为:
故②符合题意;
二次函敞的顶点坐标为:结合图象可得:
而
故③不符合题意;
当时,
又由图象可得:时,
解得:
故④符合题意;
综上:符合题意的有:①②④
故选C
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
二、填空题
1、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
2、3或-5##-5或3
【解析】
【分析】
将A点坐标代入得,解得,原方程变为,因式分解法解方程即可.
【详解】
解:将A点坐标代入得
解得
∴原方程变为
∴
∴或
解得的值为3或
故答案为:3或.
【点睛】
本题考查了解一元二次方程,二次函数与一元二次方程的关系.解题的关键在于理解二次函数与一元二次方程的关系.
3、
【解析】
【分析】
根据点,的坐标,利用二次函数的性质可求出抛物线的对称轴,此题得解.
【详解】
解:抛物线经过点和点,
抛物线的对称轴为直线.
故答案为:.
【点睛】
本题考查了二次函数的性质,解题的关键是根据抛物线的对称性,找出抛物线的对称轴.
4、①③④
【解析】
【分析】
根据抛物线开口方向,对称轴以及与轴的交点即可判断①;根据、的符号得出,即可得到,根据时,得到,即可得到,即可判断②;根据抛物线与一元二次方程的关系即可判断③;根据抛物线的对称性即可判断④.
【详解】
解:抛物线开口向下,
,
抛物线交轴于正半轴,
,
,
,
,故①正确,
,,
,
,
时,,则,
,
,故②错误,
的图象过点和,
方程的根为,,
方程的根为,
,
,故③正确;
的图象过点和,
抛物线的对称轴为直线,
,
和处的函数值相等,故④正确,
故答案为:①③④.
【点睛】
本题考查了二次函数图象与系数的关系:对于二次函数,二次项系数决定抛物线的开口方向:当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时(即,对称轴在轴左;当与异号时(即,对称轴在轴右;常数项决定抛物线与轴交点:抛物线与轴交于;△决定抛物线与轴交点个数:△时,抛物线与轴有2个交点;△时,抛物线与轴有1个交点;△时,抛物线与轴没有交点.
5、y=(x+3)2
【解析】
【分析】
根据“上加下减,左加右减”的原则进行解答即可.
【详解】
解:由“左加右减”的原则可知,将抛物线y=x2向左平移3个单位所得直线的解析式为:y=(x+3)2.
故答案是:y=(x+3)2.
【点睛】
本题考查了二次函数的图象与几何变换,正确理解平移法则是关键.
三、解答题
1、 (1)
(2)①c的值为-1,②
【解析】
【分析】
(1)根据抛物线经过,且顶点在y轴上,待定系数法求解析式即可;
(2)①根据题意作出图形,根据等腰直角三角形的性质可得,根据在抛物线上,代入求解即可,根据图形取舍即可;②设,.把代入中,得,根与系数的关系可得,由勾股定理得,,根据垂直平分线的性质可得,化简可得,进而可得当时,n随k的增大而减小,由可得,进而求得的取值范围
(1)
∵抛物线经过,且顶点在y轴上,
,解得
∴抛物线解析式为.
(2)
①依题意得:当时,轴,
与∠PBA都不可能为90°,
∴只能是,,∴点P在AB的对称轴(y轴)上,
∴点P为抛物线的顶点,即.
不妨设点A在点B的左侧,直线与y轴交于点C.
,,
,
,,
,
,
∴点
把代入中,得:
解得:,(不合题意,舍去).
∴c的值为-1.
②设,.
把代入中,得,
,由根与系数的关系可得,.
由勾股定理得,
∵点N在AB的垂直平分线上,
,
,
,
化简得.
∵直线与x轴相交,∴点A,B不关于y轴对称,
,
又,
,
,即,
.
将代入,得,
.
由反比例函数的性质,可知:当时,.
在二次函数中,
,对称轴为直线,
∴当时,n随k的增大而减小,
,
.
【点睛】
本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键.
2、 (1)
(2)
(3)t≥9
【解析】
【分析】
(1)从交点式即可求得表达式;
(2)求得直线EF的关系式,设出,,表示出MN的关系式,配方求得结果;
(3)先求得直线EF的关系式,设,,进而表示出MN的关系式,进一步求得结果.
(1)
由题意得,
故答案是:;
(2)
∵t=5
∴F(4,5),
∵E(0,3),F(4,5),
∴设直线EF的关系式为y=kx+b
把E(0,3),F(4,5)代入y=kx+b得,
解得,
∴直线EF的关系式是:y=x+3,
设,,
∴,
∴当a=3时,MN最大=,
当a=3时,,
∴;
(3)
∵E(0,3),F(4,t),
∴直线EF的关系式是:,
设,
∴,
∵对称轴,0≤m≤4,
∴当时,MN随m的增大而增大,
∴t≥9.
【点睛】
本题考查了二次及其图象性质,求一次函数的关系式等知识,解决问题的关键是熟练掌握二次函数图图象性质.
3、 (1)
(2)或
【解析】
【分析】
(1)将点A(4,4)代入进行解答即可得;
(2)由图像即可得.
(1)
解:将点A(4,4)代入得,
解得.
(2)
解:由图像可知,当或时,.
【点睛】
本题考查了正比函数,二次函数,解题的关键是掌握正比函数的性质和二次函数的性质.
4、 (1)4
(2),
(3)(2,-3),
【解析】
【分析】
(1)根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m),代入抛物线的解析式,求出A、B两点坐标即可解决问题.
(2)利用(1)中方法可求碗宽,根据等腰直角三角形可知碗高是碗宽的一半.
(3)①由碗高为3求出a,再求顶点坐标即可;②作QS⊥BP于S,找到PQ和QS的关系后即可解决问题.
(1)
解:根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m).
把B(m,m)代入y=x2,得,解得,m=2或0(舍去),
∴A(﹣2,2),B(2,2),
∴AB=4,即碗宽为4;
故答案为:4.
(2)
解:类似(1)设B(n,n),代入y=a x2,得,解得,n=或0(舍去),AB=,即碗宽为;
抛物线y=a(x﹣2)2+3是由抛物线y=ax2平移得到的,所以,它们的碗宽一样为,根据等腰直角三角形的性质,可知可知碗高是碗宽的一半,即;
故答案为:,.
(3)
解:①抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.由(2)可知,
解得,,抛物线解析式为,化成顶点式为;
则M的坐标为(2,-3);
②如图,作QS⊥BP于S,由旋转可知∠PBO=30°,因为过点P作y轴的平行线交准碗形A'MB'于点Q,
∴PQ⊥OB,
∴∠QPB=60°,∠PQS=30°,
∴PQ=2PS,,
当QS等于碗高时,QS最大,此时PQ长度的最大,
由(2)可知QS最大为3,则,;
PQ长度的最大值为.
【点睛】
本题考查了二次函数的性质和直角三角形的性质,解题关键是准确理解题意,熟练运用二次函数的性质和直角三角形的性质求解.
5、 (1)
(2)DQ的最大值为,
(3)N点坐标为或或或,见解析
【解析】
【分析】
(1)根据在抛物线上,可得,再由,可得,即可求解;
(2)过点Q作轴交直线AC于点P,令 ,可得,从而得到,进而得到,,再求出直线AC解析式,然后设,则,可得,即可求解;
(3)先求出平移后的抛物线为.然后分四种情况讨论,即可求解.
(1)
解:∵在抛物线上,
∴,
∵
∴,
将代入中得,,
∴抛物线的表达式为:;
(2)
解:过点Q作轴交直线AC于点P,如图:
当 时,,
解得: ,
∴,即OC=4,
∵OA=4,
∴,
∴,
在Rt△PQD中,,
由、得直线AC解析式为:,
设,则,
∵
∴
∴
∴当时,DQ的最大值为,此时.
(3)
解:存在,N点坐标为或或或.
设平移后满足条件的抛物线为;
∵抛物线过点,∴
∴抛物线沿射线AB的方向平移,设抛物线沿直线平移,
∴抛物线与抛物线的的顶点均在直线上;
∴由直线过点得,,解得;
由直线过得,,则,
又∵,∴,
∴,或(因为对称轴在不满足沿射线AB平移,舍去)
∴,,平移后的抛物线为.
∴对称轴为y轴,
即点M在y轴上,
当四边形ABNM为菱形,点N在x轴的上方时,
∵,.
∴;
当四边形ABN1M1为菱形,点N在x轴的下方时,
∵,.
∴;
当四边形AB M2 N2为菱形时,点N2在x轴上,则A M2垂直平分B N2,
∴O N2=OB,
∴点N2;
当四边形A M3B N3为菱形,A M3=B M3,.
设O M3=a,则B M3=A M3=4-a,
∴ ,解得: ,
∴ ,
∴点N3;
综上所述,N点坐标为或或或.
【点睛】
本题主要考查了二次函数的图象和性质,与四边形的综合题,抛物线的平移,熟练掌握二次函数的图象和性质,菱形的性质是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时练习,共30页。试卷主要包含了若二次函数y=a,抛物线的对称轴是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试达标测试,共27页。试卷主要包含了二次函数图像的顶点坐标是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练,共35页。试卷主要包含了二次函数y=ax2+bx+c,已知平面直角坐标系中有点A,根据表格对应值等内容,欢迎下载使用。