搜索
    上传资料 赚现金
    英语朗读宝

    精品试题冀教版九年级数学下册第三十章二次函数必考点解析试题(含解析)

    精品试题冀教版九年级数学下册第三十章二次函数必考点解析试题(含解析)第1页
    精品试题冀教版九年级数学下册第三十章二次函数必考点解析试题(含解析)第2页
    精品试题冀教版九年级数学下册第三十章二次函数必考点解析试题(含解析)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试习题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试习题,共25页。试卷主要包含了抛物线的顶点坐标为,二次函数的最大值是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数的图像如图所示,那么点在(       A.第一象限 B.第二象限 C.第三象限 D.第四象限2、抛物线y=4(2x﹣3)2+3的顶点坐标是(  )A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)3、对于二次函数,下列说法正确的是(       A.若,则yx的增大而增大 B.函数图象的顶点坐标是C.当时,函数有最大值-4 D.函数图象与x轴有两个交点4、在抛物线的图象上有三个点,则的大小关系为(       A. B. C. D.5、一次函数与二次函数在同一平面直角坐标系中的图象可能是(  )A. B.C. D.6、抛物线的顶点坐标为(  )A.(﹣4,﹣5) B.(﹣4,5) C.(4,﹣5) D.(4,5)7、下列二次函数的图象中,顶点在第二象限的是(       A. B.C. D.8、已知二次函数yx2﹣2x+m,点Ax1y1)、点Bx2y2)(x1x2)是图象上两点,下列结论正确的是(  )A.若x1+x2<2,则y1y2 B.若x1+x2>2,则y1y2C.若x1+x2<﹣2,则y1y2 D.若x1+x2>﹣2,则y1y29、二次函数的最大值是(   A. B. C.1 D.210、若点都在二次函数的图象上,且,则的取值范围是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数的图象如图所示,有下列五个结论:①;②;③;④;⑤为实数且).其中正确的结论有______(只填序号).2、抛物线y=(x﹣1)2+3的顶点坐标为___.3、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)4、二次函数yax2+bx+c的部分对应值列表如下:x﹣30135y7﹣8﹣9﹣57则一元二次方程a(2x+1)2+b(2x+1)+c=﹣5的解为 _____.5、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.三、解答题(5小题,每小题10分,共计50分)1、某商店销售甲、乙两种礼品,每件利润分别为20元、10元,每天卖出件数分别为40件、80件.为适应市场需求,该店决定降低甲种礼品的售价,同时提高乙种礼品的售价.售卖时发现,甲种礼品单价每降1元可多卖4件,乙种礼品单价每提高1元就少卖2件.若每天两种礼品共卖出140件,则每天销售的最大利润是多少?(1)分析:设甲种礼品每件降低了x元,填写表格(用含x的式子表示,并化简); 调价后的每件利润调价后的销售量甲种礼品乙种礼品(2)解答:            2、抛物线x轴交和点B,交y轴于点C,对称轴为直线(1)求抛物线的解析式;(2)如图,若点D为线段BC下方抛物线上一点,过点D轴于点E,再过点E于点F,请求出的最大值.3、已知二次函数yax2+bxa≠0)的图象经过点A(2,4),B(4,0).(1)求这个二次函数的表达式.(2)将x轴上的点P先向上平移3nn>0)个单位得点P1,再向左平移2n个单位得点P2,若点P1P2均在该二次函数图象上,求n的值.4、已知二次函数的图象经过点(1)求二次函数的表达式;(2)求二次函数的图象与轴的交点坐标.5、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).(1)求该抛物线的函数表达式和顶点坐标;(2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点Px1y1),Qx2y2),与直线BC交于点Nx3y3).①求直线BC的解析式;②若x3x1x2,结合函数的图象,求x1+x2+x3的取值范围. -参考答案-一、单选题1、C【解析】【分析】根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出abc的符号,进而求出的符号.【详解】由函数图像可得:∵抛物线开口向上,a>0,又∵对称轴在y轴右侧,b<0,又∵图象与y轴交于负半轴,c<0,在第三象限故选:C【点睛】考查二次函数y=ax2+bx+c系数符号的确定.根据对称轴的位置、开口方向、与y轴的交点的位置判断出abc的符号是解题的关键.2、A【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.3、A【解析】【分析】先将二次函数的解析式化为顶点式,再逐项判断即可求解.【详解】解:∵,且∴二次函数图象开口向下,∴A、若,则yx的增大而增大,故本选项正确,符合题意;B、函数图象的顶点坐标是,故本选项错误,不符合题意;C、当时,函数有最大值-2,故本选项错误,不符合题意;∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.4、C【解析】【分析】把三个点的横坐标代入解析式,然后比较函数值大小即可.【详解】解:把三个点的横坐标代入解析式得,所以,故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.5、C【解析】【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出ab的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】A、∵二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,∴一次函数图象应该过第二、三、四象限,A不可能;B、∵二次函数图象开口向上,对称轴在y轴右侧,a>0,b<0,∴一次函数图象应该过第一、三、四象限,B不可能;C、∵二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,∴一次函数图象应该过第二、三、四象限,C可能;D、∵二次函数图象开口向下,对称轴在y轴左侧,a<0,b<0,∴一次函数图象应该过第二、三、四象限,D不可能.故选:C【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据ab的正负确定一次函数图象经过的象限.6、A【解析】【分析】根据抛物线的顶点坐标为 ,即可求解.【详解】解:抛物线的顶点坐标为故选:A【点睛】本题主要考查了二次函数的图象和性质,熟练掌握抛物线的顶点坐标为是解题的关键.7、C【解析】【分析】根据二次函数的顶点式求得顶点坐标,即可判断.【详解】解:A.二次函数的顶点为(13),在第一象限,不合题意;B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;C.二次函数的顶点为(﹣13),在第二象限,符合题意;D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;故选:C【点睛】本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8、A【解析】【分析】由二次函数yx2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.【详解】解:∵二次函数yx2﹣2x+m∴抛物线开口向上,对称轴为x=1,x1x2∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,y1y2故选:A【点睛】本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.9、D【解析】【分析】由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.【详解】解:由图象的性质可知,在直线处取得最大值∴将代入中得∴最大值为2故答案为:2.【点睛】本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.10、D【解析】【分析】先求出抛物线的对称轴,再根据二次函数的性质,当点在直线的右侧时;当点在直线的两侧时,然后分别解两个不等式即可得到的范围.【详解】抛物线的对称轴为直线当点在直线的右侧,则解得当点在直线的两侧,则解得综上所述,的范围为故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.二、填空题1、③④⑤【解析】【分析】先利用二次函数的开口方向,与轴交于正半轴,二次函数的对称轴为:判断的符号,可判断①,由图象可得:在第三象限,可判断②,由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,可得点在第一象限,可判断③,由在第四象限,抛物线的对称轴为: 可判断④,当时,,当 此时: 可判断⑤,从而可得答案.【详解】解:由二次函数的图象开口向下可得: 二次函数的图象与轴交于正半轴,可得 二次函数的对称轴为: 可得 所以: 故①不符合题意;由图象可得:在第三象限, 故②不符合题意;由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,在第一象限, 故③符合题意;在第四象限, 抛物线的对称轴为: 故④符合题意;时, 此时: 故⑤符合题意;综上:符合题意的有:③④⑤,故答案为:③④⑤.【点睛】本题考查的是二次函数的图象与性质,熟练的应用二次函数的图象与性质判断代数式的符号是解题的关键.2、(1,3)【解析】【分析】根据顶点式判断顶点即可.【详解】解:∵抛物线解析式为y=(x﹣1)2+3∴顶点坐标是(1,3).故答案为:(1,3)【点睛】本题考查了二次函数解析式---顶点式,明确的顶点坐标为(hk)是解答本题的关键.3、6【解析】【分析】建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.【详解】建立平面直角坐标系如图:则抛物线顶点C坐标为(03),设抛物线解析式yax2+3A点坐标(﹣30)代入,可得:09a+3解得:a=﹣故抛物线解析式为y=﹣x2+3当水面下降3米,通过抛物线在图上的观察可转化为:y=﹣3时,对应的抛物线上两点之间的距离,也就是直线y=﹣3与抛物线相交的两点之间的距离,y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3解得:x=±所以水面宽度为米,故答案为:【点睛】本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.4、【解析】【分析】从表中找到三对数值,将三对数值分别代入y=ax2+bx+c组成方程组,求出abc的值,然后再运用因式分解法求解方程即可得到结论.【详解】解:将(-3,7),(0,-8),(1,-9)代入y=ax2+bx+c得, 整理得, ×3+①,得 代入②得, ∴一元二次方程a(2x+1)2+b(2x+1)+c=﹣5可变形为: 即: ,或 解得,故答案为:【点睛】本题考查了待定系数法求函数解析式和一元二次方程的解法,从图表中找到相关的量是解题的关键.5、【解析】【分析】根据点的坐标,利用二次函数的性质可求出抛物线的对称轴,此题得解.【详解】解:抛物线经过点和点抛物线的对称轴为直线故答案为:【点睛】本题考查了二次函数的性质,解题的关键是根据抛物线的对称性,找出抛物线的对称轴.三、解答题1、 (1)①,②,③(2)每天获得的最大利润为元.【解析】【分析】(1)设甲种礼品每件降低了x元,则调价后的销售量为原销量加上增加的销量,可得乙的销量为件,再求解乙调价后的利润即可;(2)设每天的销售利润为元,再利用总利润等于甲礼品的利润加上乙礼品的利润,可得函数关系式,再利用二次函数的性质可得答案.(1)解:设甲种礼品每件降低了x元,则调价后的销售量为:件,乙种礼品调价后的销售量为:件,乙种礼品调价后的利润为:元,填表如下: 调价后的每件利润调价后的销售量甲种礼品 乙种礼品  (2)解:设每天的销售利润为元,则 时,(元)所以每天获得的最大利润为元.【点睛】本题考查的是列代数式,二次函数的实际应用,理解题意,列出二次函数的关系式是解本题的关键.2、 (1)(2)【解析】【分析】(1)根据二次函数的对称轴及过一点,建立等式进行求解;(2)先证明出是等腰三角形,再利用二次函数的性质结合配方法求解即可.(1)解:对称轴为代入得:解得:抛物线的解析式为(2)解:设点D的坐标为DBC的下方,是等腰三角形,轴,E的坐标为时,的最大值是【点睛】本题考查了求解二次函数的解析式、二次函数的性质,等腰三角形的判定及性质,解题的关键是求解出解析式.3、 (1)(2)1【解析】【分析】(1)利用待定系数法,即可求解;(2)设点 ,可得点 ,从而得到点P1P2关于对称轴 对称,可得 ,再由点P1在该二次函数图象上,可得,即可求解.(1)解:∵二次函数yax2+bxa≠0)的图象经过点A(2,4),B(4,0), ,解得:∴这个二次函数的表达式为(2)解:设点∵点P先向上平移3nn>0)个单位得点P1,再向左平移2n个单位得点P2∴点∵点P1P2均在该二次函数图象上,∴点 关于对称轴 对称, ,即∵点P1在该二次函数图象上,解得:n>0,【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.4、 (1)yx 2+ x(2)0,﹣).【解析】【分析】1)利用待定系数法,把代入函数解析式即可求;2)令x0,求得y的值即可得出结论.(1)解:∵二次函数yax+122的图象经过点(﹣56),a(﹣5+1226解得:a∴二次函数的表达式为:yx+122,即yx 2+ x(2)解:令x0,则y×(0+122=﹣∴二次函数的图象与y轴的交点坐标为(0,﹣).【点睛】本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.5、 (1)y=x2-2x-3,(1,−4)(2)①y=x−3;②【解析】【分析】(1)把A(-1,0)代入y=x2+bx-3其凷b得到抛物线解析式,然后把一般式配成顶点式得到抛物线的顶点坐标;(2)①解方程x2-2x-3=0得B(3,0),再确定C(0,-3),然后利用待定系数法求直线BC的解析式;②如图,利用对称性得到x2-1=1-x1,则x1+x2=2,所以x1+x2+x3=2+x3,利用函数图象得到-1<x3<0,从而得到1<x1+x2+x3<2.(1)解:把A(-1,0)代入y=x2+bx-3得1-b-3=0,解得b=-2,∴抛物线解析式为y=x2-2x-3,y=(x-1)2-4,∴抛物线的顶点坐标为(1,-4);(2)解:①当y=0时,x2-2x-3=0,解得x1=-1,x2=3,则B(3,0),x=0时,y=x2-2x-3=-3,则C(0,-3),设直线BC的解析式为y=mx+nB(3,0),C(0,-3)代入得,解得∴直线BC的解析式为y=x-3;②如图,x2-1=1-x1x1+x2=2,x1+x2+x3=2+x3y3<-3,即x3-3<-3,x3<0,y=-4时,x-3=-4,解得x=-1,∴-1<x3<0,∴1<x1+x2+x3<2.【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+cabc是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质. 

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试一课一练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共35页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。

    2021学年第30章 二次函数综合与测试练习题:

    这是一份2021学年第30章 二次函数综合与测试练习题,共33页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试随堂练习题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了抛物线,,的图象开口最大的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map