![精品试题冀教版九年级数学下册第三十章二次函数必考点解析试卷(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12720767/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版九年级数学下册第三十章二次函数必考点解析试卷(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12720767/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题冀教版九年级数学下册第三十章二次函数必考点解析试卷(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12720767/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试练习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试练习题,共33页。试卷主要包含了同一直角坐标系中,函数和,若点A等内容,欢迎下载使用。
九年级数学下册第三十章二次函数必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列函数中,随的增大而减小的是( )
A. B.
C. D.
2、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
3、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
A. B. C.或 D.
4、同一直角坐标系中,函数和(是常数,且)的图象可能是( )
A. B.
C. D.
5、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
6、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A. B. C. D.
7、若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是( )
A.或6 B.或6 C.或6 D.或
8、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
9、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )
A. B.
C. D.
10、一次函数与二次函数在同一平面直角坐标系中的图象可能是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.
2、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.
3、二次函数 y 2x21 的图象开口方向______.(填“向上”或“向下”)
4、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.
5、若点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,则a与b的大小关系是:a______b(填“>”,“<”或“=”).
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交于点,过点作,垂足为.求线段的最大值;
(3)已知为抛物线对称轴上一动点,若是直角三角形,求出点的坐标.
2、一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.
(1)求抛物线的表达式;
(2)一辆货车高4m,宽2.4m,能否从该隧道内通过,为什么?
3、问题呈现:探究二次函数(其中,m为常数)的图像与一次函数的图像公共点.
(1)问题可转化为:二次函数的图像与一次函数______的图像的公共点.
(2)问题解决:在如图平面直角坐标系中画出的图像.
(3)请结合(2)中图像,就m的取值范围讨论两个图像公共点的个数.
(4)问题拓展:若二次函数(其中,m为常数)的图像与一次函数的图像有两个公共点,则m的取值范围为______.
4、已知抛物线经过,且顶点在y轴上.
(1)求抛物线解析式;
(2)直线与抛物线交于A,B两点.
①点P在抛物线上,当,且△ABP为等腰直角三角形时,求c的值;
②设直线交x轴于点,线段AB的垂直平分线交y轴于点N,当,时,求点N纵坐标n的取值范围.
5、如图, 在平面直角坐标系 中, 直线 与 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.
(1)用含 的代数式表示顶点 的坐标:
(2)当顶点 在 内部, 且 时,求抛物线的表达式:
(3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
2、B
【解析】
【分析】
①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故a﹣b+c=0,即可求解.
【详解】
解:①∵函数图象开口向下
∴
又函数的对称轴在y轴右侧,
∴
∴
∵抛物线与y轴正半轴相交,
∴c>0,
∴abc<0,故原答案错误,不符合题意;
②∵抛物线和x轴有两个交点,
∴b2﹣4ac>0正确,符合题意;
③∵点B坐标为(﹣1,0),且对称轴为x=1,
∴点A(3,0),
∴当y<0时,x<﹣1或x>3.故正确,符合题意;
④∵函数的对称轴为:x=﹣=1,
∴b=﹣2a,
∵点B坐标为(﹣1,0),
∴a﹣b+c=0,
而b=﹣2a,
∴
即3a+c=0,正确,符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.
3、A
【解析】
【分析】
先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
【详解】
解:∵当x1=1、x2=3时,y1=y2,
∴点A与点B为抛物线上的对称点,
∴,
∴b=-4;
∵对于任意实数x1、x2都有y1+y2≥2,
∴二次函数y=x2-4x+n的最小值大于或等于1,
即,
∴c≥5.
故选:A.
【点睛】
本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
4、D
【解析】
【分析】
根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.
【详解】
解:选项A:由的图象可得:
由的图象可得:则 故A不符合题意;
选项B:由的图象可得:
由的图象可得:则
而抛物线的对称轴为: 则 故B不符合题意;
选项C:由的图象可得:
由的图象可得:则 故C不符合题意;
选项D:由的图象可得:
由的图象可得:则
而抛物线的对称轴为: 则 故D符合题意;
故选D
【点睛】
本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.
5、C
【解析】
【分析】
利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
【详解】
解: 抛物线y=mx2+4mx+m﹣2(m≠0),
抛物线的对称轴为: 故①符合题意;
当时,
所以抛物线与轴有两个交点,故②不符合题意;
当时,抛物线的开口向上,如图,
则关于的对称点为: 而
故③符合题意;
当时,抛物线的开口向下,如图,
同理可得:由
则或 故④符合题意,
综上:符合题意的有:①③④
故选:C
【点睛】
本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
6、B
【解析】
【分析】
由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
【详解】
解:由题意知,平移后的抛物线解析式为
将代入解析式得,与A中点坐标不同,故不符合要求;
将代入解析式得,与B中点坐标相同,故符合要求;
将代入解析式得,与C中点坐标不同,故不符合要求;
将代入解析式得,与D中点坐标不同,故不符合要求;
故选B.
【点睛】
本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
7、C
【解析】
【分析】
表示出对称轴,分三种情况,找出关于m的方程,解之即可得出结论.
【详解】
解:∵y=-x2+mx,
∴抛物线开口向下,抛物线的对称轴为x=-,
①当≤-2,即m≤-4时,当x=-2时,函数最大值为5,
∴-(-2)2-2m=5,
解得:m=-;
②当≥1,即m≥2时,当x=1时,函数最大值为5,
∴-12+m=5,
解得:m=6.
③当-2<<1,即-4<m<2时,当x=时,函数最大值为5,
∴-()2+m•=5
解得m=2(舍去)或m=-2(舍去),
综上所述,m=-或6,
故选:C.
【点睛】
本题考查了二次函数的最值、解一元二次方程,解题的关键是:分三种情况,找出关于m的方程.
8、B
【解析】
【分析】
由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
【详解】
解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
∴点A对称的点的坐标为
∵
∴
故选B.
【点睛】
本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
9、D
【解析】
【分析】
分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=4,∠A=∠C=90°,AD∥BC,
∴∠ADB=∠DBC=60°,
∴∠ABD=∠CDB=30°,
∴BD=2AD=8,
当点P在AD上时,PE⊥BQ
S△PBQ =·BQ·PE
=•(8-2t)•(4-t)•sin60°
=(4-t)2(0<t<4),
当点P在线段BD上时,QE’⊥BP
S△PBQ=·BP·QE’
=[12-2(t-4)]•(t-)sin60°
=-t2+t-16(4<t≤8),
观察图象可知,选项D满足条件,
故选:D.
【点睛】
本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
10、C
【解析】
【分析】
逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
【详解】
A、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,A不可能;
B、∵二次函数图象开口向上,对称轴在y轴右侧,
∴a>0,b<0,
∴一次函数图象应该过第一、三、四象限,B不可能;
C、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,C可能;
D、∵二次函数图象开口向下,对称轴在y轴左侧,
∴a<0,b<0,
∴一次函数图象应该过第二、三、四象限,D不可能.
故选:C.
【点睛】
本题考查了二次函数的图象以及一次函数图象与系数的关系,解题的关键是根据a、b的正负确定一次函数图象经过的象限.
二、填空题
1、5
【解析】
【分析】
先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.
【详解】
解:∵抛物线y=a(x-1)2+k(a、k为常数),
∴对称轴为直线x=1,
∵点A和点B关于直线x=1对称,且点A(-1,0),
∴点B(3,0),
∴OB=3,
∵C点和D点关于x=1对称,且点C(0,a+k),
∴点D(2,a+k),
∴CD=2,
∴线段OB与线段CD的长度和为5,
故答案为5.
【点睛】
本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.
2、
【解析】
【分析】
由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
【详解】
解:由图象可得:抛物线的对称轴为:
而
解得:
故答案为:
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
3、向上
【解析】
【分析】
根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.
【详解】
∵a=2>0,
∴二次函数y=2x2+1图象的开口方向是向上,
故答案为:向上.
【点睛】
本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.
4、##
【解析】
【分析】
过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
【详解】
解:如图,过点作,交于点,
∠C=90°.直角边AC=3m、BC=4m,
设,则
四边形是矩形
,
整理得
设矩形的面积为,则
当取得最大值时,,此时
故答案为:
【点睛】
本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
5、<
【解析】
【分析】
根据二次函数的解析式求得对称轴以及开口方向,根据点与对称轴的距离越远函数值越大即可判断的大小关系.
【详解】
解:∵二次函数y=(x﹣1)2,,开口向上,对称轴为
又点(0,a),(3,b)都在二次函数y=(x﹣1)2的图象上,
故答案为:
【点睛】
本题考查了二次函数图象的性质,掌握二次函数图象的性质是解题的关键.
三、解答题
1、 (1)
(2)当时,有最大值,最大值是
(3)点的坐标为,,,
【解析】
【分析】
(1)由抛物线与x轴交于A(﹣1,0)、B(3,0)两点,设抛物线为y=a(x+1)(x﹣3),将C(0,3)代入即可得y=﹣x2+2x+3;
(2)由B(3,0),C(0,3),可推得△DEM是等腰直角三角形,DM=DE,设直线BC为y=kx+b,用待定系数法可得直线BC为y=﹣x+3,设D(m,﹣m2+2m+3),则E(m,﹣m+3),即得DE=﹣m2+3m,由二次函数性质可得线段DM的最大值;
(3)设P(1,t),可得PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,分三种情况:①PC为斜边时,②PB为斜边时,③BC为斜边时,列出方程求解即可.
(1)
解:∵抛物线与轴交于、两点,
∴设抛物线解析式为,
将点坐标代入,得:,
解得:,
抛物线解析式为;
(2)
解:设直线的函数解析式为,
∵直线过点,,
∴,解得,
∴,
设,,
∴,
∵,,
∴,
∴,
∵轴,
∴,
∴,
又∵,
在中,
∴,
∵,
∴当时,有最大值,最大值是;
(3)
解:抛物线的对称轴为直线,
设P(1,t),而B(3,0),C(0,3),
∴PB2=(1﹣3)2+t2=4+t2,PC2=(1﹣0)2+(t﹣3)2=1+(t﹣3)2,BC2=18,
①当是斜边时,,解得:;
②当是斜边时,,解得:;
③当是斜边时,,
整理,得:,解得:,
故点的坐标为:,,,
【点睛】
本题考查二次函数综合应用,涉及待定系数法、函数图象上点坐标的特征、直角三角形的判定等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.
2、 (1)
(2)货车可以通过,说明见解析
【解析】
【分析】
(1)由题意可知,抛物线的顶点坐标(4,6),设抛物线的解析式为,将A点坐标代入求解a的值,进而得到抛物线的表达式;
(2)令y=4,代入解析式,得到方程的两根,比较与2.4的大小即可判断货车是否可以通过.
(1)
解:由题意可知,抛物线的顶点坐标(4,6)
设抛物线的解析式为
又∵点A(0,2)在抛物线上
∴
解得
∴抛物线的表达式为:.
(2)
解:令y=4,则有
解得,
∵
∴货车可以通过.
【点睛】
本题考查了二次函数的解析式与应用.解题的关键在于适当的设二次函数解析式的形式.
3、 (1)
(2)见解析
(3)或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
(4)
【解析】
【分析】
(1)令,整理得:,可以转化为二次函数的图像与一次函数图像的公共点;
(2)先在坐标轴上描出点,再连线即可;
(3)通过数形结合的方式进行分类讨论;
(4)通过数形结合的方式,分当时;当时;注意当时,要使有两个公共点,则满足,求解即可.
(1)
解:令,
整理得:,
可以转化为二次函数的图像与一次函数图像的公共点,
故答案为:;
(2)
解:先在坐标轴上描出点,
再连线即可,如下图:
(3)
解:如图:
当时,与有一个交点,
当时,与有两个交点,
当时,与有一个交点,
综上:或或,两个图像公共点的个数为1个;时,两个图像公共点的个数为2个;或时,两个图像公共点的个数为0个;
(4)
解:如下图:
当时,(其中,m为常数)与有一个交点有一个公共点;
当时,(其中,m为常数)与没有公共点;
要使(其中,m为常数)与有两个公共点,则满足
且,
解得:且,
,
故时,(其中,m为常数)与有两个公共点,
故答案为:.
【点睛】
本题考查了二次函数与一次函数的综合,函数图象的交点问题,解题的关键是利用数形结合、分类讨论、转化的思想进行求解.
4、 (1)
(2)①c的值为-1,②
【解析】
【分析】
(1)根据抛物线经过,且顶点在y轴上,待定系数法求解析式即可;
(2)①根据题意作出图形,根据等腰直角三角形的性质可得,根据在抛物线上,代入求解即可,根据图形取舍即可;②设,.把代入中,得,根与系数的关系可得,由勾股定理得,,根据垂直平分线的性质可得,化简可得,进而可得当时,n随k的增大而减小,由可得,进而求得的取值范围
(1)
∵抛物线经过,且顶点在y轴上,
,解得
∴抛物线解析式为.
(2)
①依题意得:当时,轴,
与∠PBA都不可能为90°,
∴只能是,,∴点P在AB的对称轴(y轴)上,
∴点P为抛物线的顶点,即.
不妨设点A在点B的左侧,直线与y轴交于点C.
,,
,
,,
,
,
∴点
把代入中,得:
解得:,(不合题意,舍去).
∴c的值为-1.
②设,.
把代入中,得,
,由根与系数的关系可得,.
由勾股定理得,
∵点N在AB的垂直平分线上,
,
,
,
化简得.
∵直线与x轴相交,∴点A,B不关于y轴对称,
,
又,
,
,即,
.
将代入,得,
.
由反比例函数的性质,可知:当时,.
在二次函数中,
,对称轴为直线,
∴当时,n随k的增大而减小,
,
.
【点睛】
本题考查了二次函数、一次函数图象与性质,反比例函数的性质,一元二次方程根与系数的关系,等腰三角形的性质,待定系数法求解析式,数形结合是解题的关键.
5、 (1)
(2);
(3)1<a<3
【解析】
【分析】
(1)利用配方法将抛物线解析式化为顶点式即可解答;
(2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;
(3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解
(1)
解:拋物线 ,
∴顶点C的坐标为;
(2)
解:对于,当x=0时,y=5,当y=0时,x=5,
∴A(5,0),B(0,5),
∵顶点 在 内部, 且 ,
∴,
∴a=2,
∴拋物线的表达式为 ;
(3)
解:由题意,平移后的抛物线的顶点P的坐标为,
∵平移后的抛物线的顶 点 仍在 内,
∴,
解得:1<a<3,
即 的取值范围为1<a<3.
【点睛】
本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.
相关试卷
这是一份2021学年第30章 二次函数综合与测试精品同步达标检测题,共36页。
这是一份数学九年级下册第30章 二次函数综合与测试课时作业,共36页。试卷主要包含了抛物线y=﹣2,若点A等内容,欢迎下载使用。
这是一份初中冀教版第30章 二次函数综合与测试复习练习题,共28页。试卷主要包含了已知平面直角坐标系中有点A等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)