|试卷下载
搜索
    上传资料 赚现金
    精品试卷冀教版九年级数学下册第三十章二次函数专项攻克试卷(含答案详解)
    立即下载
    加入资料篮
    精品试卷冀教版九年级数学下册第三十章二次函数专项攻克试卷(含答案详解)01
    精品试卷冀教版九年级数学下册第三十章二次函数专项攻克试卷(含答案详解)02
    精品试卷冀教版九年级数学下册第三十章二次函数专项攻克试卷(含答案详解)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试复习练习题

    展开
    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试复习练习题,共33页。试卷主要包含了抛物线的顶点为,若点A等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数专项攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、若函数,则当函数y=15时,自变量的值是( )
    A. B.5 C.或5 D.5或
    2、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    3、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
    A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
    C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
    4、二次函数的自变量与函数值的部分对应值如下表:


    -3
    -2
    -1
    0
    1



    -11
    -3
    1
    1
    -3

    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①② B.③④ C.①③ D.①②④
    5、已知二次函数的图象经过,,则b的值为( )
    A.2 B. C.4 D.
    6、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.

    A.1 B.2 C.3 D.4
    7、抛物线的顶点为( )
    A. B. C. D.
    8、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为(  )

    A.②③ B.②④ C.①②③ D.②③④
    9、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    10、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知多项式除以的余数分别为,则除以所得余式的最大值为_________.
    2、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.

    3、抛物线y=﹣2(x﹣1)2+4的最高点坐标是_____.
    4、已知二次函数y=x2+bx+3图象的对称轴为x=2,则b=________;顶点坐标是________.
    5、定义:在平面直角坐标系中,若点的横、纵坐标都为整数,则把这样的点叫做“整点”.如:A(1,0),B(﹣3,2)都是“整点”,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点,若该抛物线在P,Q之间的部分与线段PQ所围的区域(不包括边界)恰有3个整点,则a的取值范围是_____.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,因疫情防控需要,某校在足够大的空地利用旧墙MN和隔离带围成一个矩形隔离区ABCD,墙长为a米,AD≤MN,矩形隔离区的一边靠墙,其它三边一共用隔离带200米.

    (1)a=30,所围成的矩形隔离区的面积为1800平方米,求所利用旧墙AD的长;
    (2)若a=150.求矩形隔离区ABCD面积的最大值.
    2、已知在平面直角坐标系中,拋物线经过点、,顶点为点.

    (1)求抛物线的表达式及顶点的坐标;
    (2)联结,试判断与是否相似,并证明你的结论;
    (3)抛物线上是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.
    3、在平面直角坐标系xOy中,已知抛物线:y=ax2-2ax+4(a>0).

    (1)抛物线的对称轴为x=  ;抛物线与y轴的交点坐标为  ;
    (2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;
    (3)若A(m-1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y1>y3>y2,结合图象,求m的取值范围.
    4、已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.
    (1)求点C的坐标和抛物线的解析式;
    (2)若点P是抛物线上一点,且PB=PC,求点P的坐标;
    (3)点Q是抛物线的对称轴l上一点,当QA+QC最小时,求点Q的坐标.
    5、如图,抛物线经过点,,.

    (1)求抛物线的解析式;
    (2)若点为第三象限内抛物线上的一点,设的面积为,求的最大值并求出此时点的坐标;
    (3)设抛物线的顶点为,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
    【详解】
    解:当x<3时,
    令2x2-3=15,
    解得x=-3;
    当x≥3时,
    令3x=15,
    解得x=5;
    由上可得,x的值是-3或5,
    故选:D.
    【点睛】
    本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
    2、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    3、B
    【解析】
    【分析】
    根据二次函数的图象与性质逐项分析即可.
    【详解】
    A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
    B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
    C、当a<0时, ,其顶点坐标为,当a=−1时,顶点坐标为(1,0 ),在x轴上,故命题错误;
    D、由于,抛物线的对称轴为直线x=1,当a>0且x≥1时,y随x增大而增大,故命题错误.
    故选:B
    【点睛】
    本题考查了二次函数的图象与性质、二次函数与一元二次方程的关系,熟练掌握这些知识是解题的关键.
    4、A
    【解析】
    【分析】
    根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
    【详解】
    解:把(-1,1),(1,-3),(-2,-3)代入,得

    解得,
    ∴二次函数式为:

    ∴二次函数的图像开口向下,故①正确;

    ∴对称轴为直线
    ∴当时,随的增大而减小,故②正确;
    当时,二次函数的最大值是,故③错误;
    若,是二次函数图像与轴交点的横坐标,则,故④错误
    ∴正确的是①②
    故答案为①②
    【点睛】
    本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    5、C
    【解析】
    【分析】
    由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
    【详解】
    解: 二次函数的图象经过,,
    二次函数图象的对称轴为:
    解得:
    故选C
    【点睛】
    本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
    6、C
    【解析】
    【分析】
    由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
    【详解】
    解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,

    故①符合题意;
    二次函敞的图象过点,结合图象可得:
    在抛物线上,
    抛物线的对称轴为:


    故②符合题意;
    二次函敞的顶点坐标为:结合图象可得:


    故③不符合题意;
    当时,


    又由图象可得:时,

    解得:

    故④符合题意;
    综上:符合题意的有:①②④
    故选C
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
    7、B
    【解析】
    【分析】
    根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
    【详解】
    解:∵y=2(x-1)2+3,
    ∴抛物线的顶点坐标为(1,3),
    故选:B.
    【点睛】
    本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
    8、D
    【解析】
    【分析】
    根据二次函数的图象及性质即可判断.
    【详解】
    解:由函数图象可知,抛物线开口向上,
    ∴a>0,
    ∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
    ∴抛物线与x轴另一个交点坐标为(3,0),
    ∴当x>1时,y随x的增大而增大,故①错误;
    ∵﹣=1,
    ∴b=﹣2a,
    ∴2a+b=0,故②正确;
    当x=2时,y=4a+2b+c<0,故③正确;
    当x=﹣1时,y=a﹣b+c=3a+c=0,
    ∴c=﹣3a,
    ∴﹣a>c,
    ∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
    ∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
    即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
    正确的有②③④,
    故选:D.
    【点睛】
    本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
    9、B
    【解析】
    【分析】
    由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
    【详解】
    解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
    ∴点A对称的点的坐标为


    故选B.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
    10、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    二、填空题
    1、5
    【解析】
    【分析】
    先根据已知得出,再设,从而可得一个关于的方程组,解方程组可得的值,然后利用二次函数的性质即可得出答案.
    【详解】
    解:多项式除以的余数为1,

    当时,,
    同理可得:,
    设除以所得商式为,余式为(因为除式是三次的,所以余式至多是二次的),
    则,
    因此有,
    解得a=-1b=6c=-4,
    所以余式为,
    由二次函数的性质得:当时,余式取得最大值,最大值为5,
    故答案为:5.
    【点睛】
    本题考查了多项式的除法、二次函数的性质等知识点,正确设出余式的一般形式是解题关键.
    2、(,)
    【解析】
    【分析】
    设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
    【详解】
    解:∵点A是抛物线图像上一点
    故设A(x,x2),
    ∵将点A向下平移2个单位到点B,
    故B(x,x2-2)
    ∵把A绕点B顺时针旋转120°得到点C,如图,

    过点B作BD⊥AB于B,过点C作CD⊥BD于D,
    AB=BC=2,∠ABC=120°,∠ABD=90°,
    ∴∠DBC=30°
    故CD=,BD=,
    故C(x+,x2-3),
    把C(x+,x2-3)代入,
    ∴x2-3=(x+)2,
    解得x=-
    ∴A(-,3)
    故答案为:(,3).
    【点睛】
    此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
    3、
    【解析】
    【分析】
    根据,顶点坐标是,可得答案.
    【详解】
    解:抛物线为,
    开口向下,则最高点坐标是顶点坐标,
    顶点坐标.
    故答案为:.
    【点睛】
    本题考查了二次函数的性质以及顶点式,解题的关键是准确理解顶点式.
    4、 4 (2,7)
    【解析】
    【分析】
    由对称轴公式即可求得b,把解析式化成顶点式即可求得顶点坐标.
    【详解】
    解:∵二次函数y=x2+bx+3图象的对称轴为x=2,
    ∴−=2,
    ∴b=4,
    ∴二次函数y=−x2+4x+3,
    ∵y=−x2+4x+3=−(x−2)2+7,
    ∴顶点坐标是(2,7),
    故答案为:4,(2,7).
    【点睛】
    本题考查了二次函数的图象和性质,熟知对称轴公式和二次函数解析式的三种表现形式是解题的关键.
    5、
    【解析】
    【分析】
    将函数解析式化为顶点式,确定图象的对称轴及顶点坐标,得到3个整点的位置,由此得到不等式组,求解即可.
    【详解】
    解:∵y=ax2﹣2ax+a+2=,
    ∴函数的对称轴为直线x=1,顶点坐标为(1,2),
    ∴P,Q两点关于直线x=1对称,
    根据题意,抛物线y=ax2﹣2ax+a+2(a<0)与x轴交于P,Q两点(不包括边界)恰有3个整点,这些整点是(0,1),(1,1),(2,1),
    ∵当x=0时,y=a+2,
    ∴,
    当x=-1时,y=4a+2,
    ∴,
    ∴,解得,
    故答案为:.

    【点睛】
    此题考查了将二次函数一般式化为顶点式,二次函数的性质,一元一次不等式组的应用,根据二次函数的对称轴及顶点确定3个点的位置,由此顶点不等式组是解题的关键.
    三、解答题
    1、 (1)AD=20米;
    (2)当x=100时,S最大=5000米2.
    【解析】
    【分析】
    (1)设AD=x,AB=(200-x)÷2=100-,根据长方形面积公式列方程,解方程,根据墙长得出AD=20米;
    (2)矩形隔离区ABCD面积用S表示,根据长方形面积公式列出面积函数S=x100-12x然后配方为S即可.
    (1)
    解:设AD=x,AB=(200-x)÷2=100-,
    ∴根据题意得:,
    整理得,
    解得:,
    ∵a=30,
    ∴AD=20米;
    (2)
    解:矩形隔离区ABCD面积用S表示,
    则S=,
    ∵a=150>100,
    ∴当x=100时,S最大=5000米2.
    【点睛】
    本题考查长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题,掌握长方形面积,列一元二次方程解图形问题应用题,列二次函数解图形问题的最值问题是解题关键.
    2、 (1),顶点坐标为:;
    (2),证明见解析;
    (3)存在点P,,理由见解析.
    【解析】
    【分析】
    (1)根据题意设抛物线解析式为:,将点C代入解得,代入抛物线可得函数解析式;将一般式化为顶点式即可确定顶点坐标;
    (2)结合图象,分别求出的三边长,的三边长,由勾股定理逆定理可得为直角三角形,且两个三角形的三条边对应成比例,即可证明;
    (3)设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,可得,,利用等腰直角三角形的性质可得,,再由勾股定理可得,设,根据直角坐标系中两点之间的距离利用勾股定理可得,同理可得=,利用代入消元法解方程即可确定点F的坐标,然后求出直线AF的直线解析式,联立抛物线解析式求交点坐标即可得.
    (1)
    解:抛物线经过点,,,
    设抛物线解析式为:,
    将点C代入可得:,
    解得:,
    ∴,
    ∴顶点坐标为:;
    (2)
    解:如图所示:

    为直角三角形且三边长分别为:,,,
    的三边长分别为:,
    ,,
    ∴,
    ∴为直角三角形,
    ∵,
    ∴;
    (3)
    解:设存在点P使,作线段AC的中垂线交AC于点E,交AP于点F,连接CF,如(2)中图:
    ∴,,
    ∵,
    ∴,
    ∴为等腰直角三角形,
    ∴,,
    ∴,即
    解得:,
    设,
    ∴,,
    ∴,
    整理得:①,
    =,
    即②,
    将①代入②整理得:,
    解得:,,
    ∴,,
    ∴或(不符合题意舍去),
    ∴,,
    设直线FA解析式为:,将两个点代入可得:

    解得:,
    ∴,
    ∴联立两个函数得:,
    将①代入②得:,
    整理得:,
    解得:,,
    当时,,
    ∴.
    【点睛】
    题目主要考查待定系数法确定函数解析式,相似三角形得判定和性质,中垂线的性质,等腰直角三角形的性质,勾股定理等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
    3、 (1)1,(0,4)
    (2)顶点坐标为(1,0),y=4x2-8x+4
    (3)
    【解析】
    【分析】
    (1)根据二次函数对称轴公式,以及与y轴的交点坐标公式;
    (2)根据二次函数与x轴交点公式,以及待定系数法求解析式;
    (3)先求对称点坐标根据函数的增减性解决本题.
    (1)
    解:,
    当x=0时,y=ax2-2ax+4=4,
    所以抛物线的对称轴是直线x=1,抛物线与y轴的交点坐标是(0,4),
    故答案为:1,(0,4).
    (2)
    解:∵抛物线的顶点恰好在x轴上,
    ∴抛物线的顶点坐标为(1,0),
    把(1,0)代入y=ax2-2ax+4得:0=a×12-2a×1+4,
    解得:a=4,
    ∴抛物线的解析式为y=4x2-8x+4.
    (3)
    解:A(m-1,y1)关于对称轴x=1的对称点为A′(3-m,y1),
    B(m,y2)关于对称轴x=1的对称点为B′(2-m,y2),
    若要y1>y3>y2,则3-m>m+2>2-m,解得:.
    【点睛】
    本题考查二次函数图像求对称轴公式,以及与x轴,y轴的交点公式,以及函数的增减性,掌握数形结合的思想是解决本题的关键.
    4、 (1),
    (2)或
    (3)
    【解析】
    【分析】
    (1)对于,当时,,求得,解方程组即可得到结论;
    (2)根据,,得到,连接,设的中点为,求得,,得到直线的解析式为,设,解方程即可得到结论;
    (3)由(1)知,抛物线的对称轴为直线,根据轴对称的性质得到,,当,,三点共线时,最小,即最小,求得直线的解析式为,把代入即可得到结论.
    (1)
    解:对于,当时,,

    抛物线为常数,交轴于点和点,

    解得,
    抛物线的解析式为;
    (2)
    解:,,

    连接,设的中点为,

    ,,
    直线的解析式为,

    点在直线上,
    设,
    点是抛物线上一点,

    解得,
    点的坐标为,或,;
    (3)
    解:由(1)知,抛物线的对称轴为直线,
    点与点关于对称,点在直线上,
    ,,
    当,,三点共线时,最小,即最小,
    设直线的解析式为,

    解得,
    直线的解析式为,
    把代入得,,

    当最小时,求点的坐标.
    【点睛】
    本题是二次函数的综合题,考查了待定系数法求函数的解析式以及二次函数的性质,轴对称最短路线问题,解题的关键是熟练掌握待定系数法求函数的解析式.
    5、 (1)
    (2)当时,有最大值,此时点的坐标为
    (3)在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
    【解析】
    【分析】
    (1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;
    (2)过点作轴的垂线交于,过点作轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;
    (3)分三种情况进行讨论:①以为直角顶点;②以为直角顶点;③以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.
    (1)
    解:抛物线经过点,,,
    ,解得.
    抛物线的解析式为:;
    (2)
    如图,过点作轴的垂线交于,过点作轴的垂线,交于点.

    设直线的解析式为,由题意,得
    ,解得,
    直线的解析式为:.
    设点坐标为,则点的坐标为,



    当时,有最大值,此时点的坐标为;
    (3)
    解:在轴上是存在点,能够使得是直角三角形.理由如下:

    顶点的坐标为,


    设点的坐标为,分三种情况进行讨论:
    ①当为直角顶点时,如图3①,

    由勾股定理,得,
    即,
    解得,
    所以点的坐标为;
    ②当为直角顶点时,如图3②,

    由勾股定理,得,
    即,
    解得,
    所以点的坐标为;
    ③当为直角顶点时,如图3③,

    由勾股定理,得,
    即,
    解得或,
    所以点的坐标为或;
    综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
    【点睛】
    本题考查了二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,解题的关键是运用数形结合、分类讨论及方程思想进行求解.

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试精品习题: 这是一份冀教版九年级下册第30章 二次函数综合与测试精品习题,共32页。试卷主要包含了二次函数图像的顶点坐标是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。

    冀教版九年级下册第30章 二次函数综合与测试课时训练: 这是一份冀教版九年级下册第30章 二次函数综合与测试课时训练,共24页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map