搜索
    上传资料 赚现金
    英语朗读宝

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数难点解析练习题(精选含解析)

    2022年最新强化训练冀教版九年级数学下册第三十章二次函数难点解析练习题(精选含解析)第1页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数难点解析练习题(精选含解析)第2页
    2022年最新强化训练冀教版九年级数学下册第三十章二次函数难点解析练习题(精选含解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试课后测评

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课后测评,共26页。
    九年级数学下册第三十章二次函数难点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数的最大值是(   A. B. C.1 D.22、一次函数与二次函数的图象交点(  )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点3、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,其中.得出结论:①;②;③;④.上述结论正确的有(       )个.A.1 B.2 C.3 D.44、在同一坐标系内,函数ykx2ykx﹣2(k≠0)的图象大致如图(  )A. B.C. D.5、如图,直线y轴交于点A,与直线交于点B,若抛物线的顶点在直线上移动,且与线段都有公共点,则h的取值范围是(       A. B. C. D.6、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为(       A. B.C. D.7、二次函数yax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过(  )A.第一象限 B.第二象限 C.第三象限 D.第四象限8、已知抛物线ymx2+4mx+m﹣2(m≠0),点Ax1y1),B(3,y2)在该抛物线上,且y1y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有(  )A.1个 B.2个 C.3个 D.4个9、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于AB两点,拱高为78米(即最高点OAB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为(       A. B. C. D.10、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是(       A.① B.② C.③ D.②③第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、若抛物线轴交于原点,则的值为 __.2、当xm时,两个函数y1=﹣(x﹣4)2+2和y2=﹣(x﹣3)2+1的函数值都随着x的增大而减小,则m的最小值为_____.3、已知二次函数,当yx的增大而增大时,自变量x的取值范围是______.4、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.5、某农场拟建两间矩形饲养室,一面靠足够长的墙体,中间用一道围栏隔开,并在如图所示的两处各留宽的门,所有围栏的总长(不含门)为,若要使得建成的饲养室面积最大,则利用墙体的长度为______三、解答题(5小题,每小题10分,共计50分)1、已知二次函数yx2+2x(1)写出该二次函数图象的对称轴.(2)已知该函数图象经过Ax1y1),Bx2y2)两个不同的点.①当x1=3n+4,x2=2n﹣1,且y1y2时,求n的值.②当x1>﹣1,x2>﹣1时,求证:(x1x2)(y1y2)>02、已知二次函数的图象经过点,对称轴是经过且平行于轴的直线.(1)求的值,(2)如图,一次函数的图象经过点,与轴相交于点,与二次函数的图象相交于另一点,若点与点关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出时,的取值范围.3、如图,要用篱笆(虚线部分)围成一个矩形苗圃ABCD,其中两边靠的墙足够长,中间用平行于AB的篱笆EF隔开,已知篱笆的总长度为18米,设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y).(1)求yx的函数关系式;(2)求所围矩形苗圃ABCD的面积最大值;4、一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽2.4m,能否从该隧道内通过,为什么?5、已知,如图,直线分别与轴、轴交于点,抛物线经过点和点,其对称轴与直线交于点(1)求二次函数的表达式;(2)若抛物线(其中)与抛物线的对称轴交于点.与直线交于点,过点轴交抛物线的对称轴左侧部分于点①若点和点重合,求的值;②若点在点的下方,求的长(用含有的代数式表示);③在②的条件下,设的长度为个单位,的长度为个单位,若.直接写出的范围. -参考答案-一、单选题1、D【解析】【分析】由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.【详解】解:由图象的性质可知,在直线处取得最大值∴将代入中得∴最大值为2故答案为:2.【点睛】本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.2、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解3、C【解析】【分析】由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.【详解】解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴, 故①符合题意; 二次函敞的图象过点,结合图象可得:在抛物线上, 抛物线的对称轴为: 故②符合题意; 二次函敞的顶点坐标为:结合图象可得: 故③不符合题意;时, 又由图象可得:时, 解得: 故④符合题意;综上:符合题意的有:①②④故选C【点睛】本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.4、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.5、B【解析】【分析】联立可求得点B的坐标,然后由抛物线的顶点在直线可求得k=−h,于是可得到抛物线的解析式为y=(xh)2−h,由图形可知当抛物线经过点B和点C时抛物线与线段ABBO均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.【详解】解:∵将联立得:解得:∴点B的坐标为(−2,1),由抛物线的解析式可知抛物线的顶点坐标为(hk),∵将xhyk,代入得y=−x得:−hk,解得k=−h∴抛物线的解析式为y=(xh2h如图1所示:当抛物线经过点C时,C(0,0)代入y=(xh)2−h得:h2h=0,解得:h1=0(舍去),h2如图2所示:当抛物线经过点B时,B(−2,1)代入y=(xh2h得:(−2−h2h=1,整理得:2h2+7h+6=0,解得:h1=−2,h2=−(舍去).综上所述,h的范围是−2≤h,即−2≤h故选:B【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数的交点与一元二次方程组的关系、待定系数法求二次函数的解析式,通过平移抛物线探究出抛物线与线段ABBO均有交点时抛物线经过的“临界点”为点B和点O是解题解题的关键.6、B【解析】【分析】根据增长率问题的计算公式解答.【详解】解:第2年的销售量为第3年的销售量为故选:B【点睛】此题考查了增长率问题的计算公式a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.7、D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出ab的正负情况,再由一次函数的性质解答.【详解】解:由势力的线与y轴正半轴相交可知c>0,对称轴x=-<0,得b<0. 所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.故选:D【点睛】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.8、C【解析】【分析】利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.【详解】解: 抛物线ymx2+4mx+m﹣2(m≠0), 抛物线的对称轴为: 故①符合题意; 时, 所以抛物线与轴有两个交点,故②不符合题意;时,抛物线的开口向上,如图,关于的对称点为: 故③符合题意;时,抛物线的开口向下,如图,同理可得:由 故④符合题意,综上:符合题意的有:①③④故选:C【点睛】本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.9、B【解析】【分析】直接利用图象设出抛物线解析式,进而得出答案.【详解】∵拱高为78米(即最高点OAB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a解得:a=∴此抛物线钢拱的函数表达式为故选:B.【点睛】本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.10、B【解析】【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点Mab)在抛物线y=x(2-x)上, b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,a有两个相同的值,∴点M的个数为1,故②正确;b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.二、填空题1、-3【解析】【分析】根据函数图象经过原点时,,代入即可求出的值.【详解】解:抛物线轴交于原点,时,故答案为:【点睛】本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.2、4【解析】【分析】先确定两个函数的开口方向和对称轴,再得出符合条件的x的取值范围,从而得到m的最小值.【详解】解:函数y1=﹣(x﹣4)2+2开口向下,对称轴为直线x=4,函数y2=﹣(x﹣3)2+1开口向下,对称轴为直线x=3,当函数值都随着x的增大而减小,x≥4,即m的最小值为4,故答案为:4.【点睛】本题考查了二次函数的图像和性质,解题的关键是掌握二次函数的基本性质.3、【解析】【分析】函数图象的对称轴为直线,图象在对称轴的右侧yx的增大而增大,进而可得自变量x的取值范围.【详解】解:由知函数图象的对称轴为直线,图象在对称轴的右侧yx的增大而增大∴自变量x的取值范围是故答案为:【点睛】本题考查了二次函数的图象与性质.解题的关键在于熟练把握二次函数的图象与性质.4、(0,-1)【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将二次函数y=-x2+2图象向下平移3个单位,得到y=-x2+2-3=-x2-1,顶点坐标为(0,-1),故答案为:(0,-1).【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.5、14【解析】【分析】设平行于墙体的材料长度为 ,则垂直于墙体的材料长度为 根据题意列出函数关系式,再利用二次函数的性质,即可求解.【详解】解:设平行于墙体的材料长度为 ,建成的饲养室的总面积为 ,则垂直于墙体的材料长度为 根据题意得:建成的饲养室的总面积为∴当 时,建成的饲养室面积最大,即此时利用墙体的长度为故答案为:14【点睛】本题主要考查了二次函数的应用,明确题意,准确得到等量关系是解题的关键.三、解答题1、 (1)直线x=-1(2)①-1;②见解析【解析】【分析】(1)直接根据对称轴公式求解;(2)①将x1x2代入函数表达式,根据y1y2得到方程,解之即可;②将(x1x2)(y1y2)变形为(x1x22x1x2+2),再根据x1>﹣1,x2>﹣1判断出结果的符号,即可证明.(1)解:二次函数yx2+2x中,对称轴为直线x==-1;(2)①当x1=3n+4,x2=2n﹣1,且y1y2时,y1=(3n+4)2+2(3n+4)=9n2+30n+24,y2=(2n﹣1)2+2(2n﹣1)=4n2-1,则9n2+30n+24=4n2-1,解得:n=-5或n=-1;时, 不符合题意,舍去,所以 ②(x1x2)(y1y2=(x1x2)[(x12+2x1)﹣(x22+2x2)]=(x1x2)(x12+2x1x22﹣2x2=(x1x22x1x2+2)x1>﹣1,x2>﹣1,x1x2+2>-1-1+2=0,又∵Ax1y1),Bx2y2)是两个不同的点,x1x2∴(x1x22>0,∴(x1x22x1x2+2)>0,即(x1x2)(y1y2)>0.【点睛】本题考查了二次函数的对称轴,解一元二次方程,因式分解的应用,解题的关键是要灵活运用因式分解将式子变形.2、 (1)(2)(3)3、 (1)y=﹣2x2+18x(2)m2【解析】【分析】(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y),则,根据矩形的面积公式求解即可;(2)根据顶点坐标公式计算即可求解(1)设矩形苗圃ABCD的一边AB的长为x(m),矩形苗圃ABCD面积为y),则根据题意得:yx(18﹣2x)=﹣2x2+18x(2)二次函数y=﹣2x2+18x(0<x<9),a=﹣2<0,∴二次函数图象开口向下,且当x=﹣时,y取得最大值,最大值为y×(18﹣2×)=(m2);【点睛】本题考查了一元二次函数的应用,用代数式表示出是解题的关键.4、 (1)(2)货车可以通过,说明见解析【解析】【分析】(1)由题意可知,抛物线的顶点坐标(4,6),设抛物线的解析式为,将A点坐标代入求解a的值,进而得到抛物线的表达式;(2)令y=4,代入解析式,得到方程的两根,比较与2.4的大小即可判断货车是否可以通过.(1)解:由题意可知,抛物线的顶点坐标(4,6)设抛物线的解析式为又∵点A(0,2)在抛物线上解得∴抛物线的表达式为:(2)解:令y=4,则有解得∴货车可以通过.【点睛】本题考查了二次函数的解析式与应用.解题的关键在于适当的设二次函数解析式的形式.5、 (1)(2)①;②,当时,;当时,;③【解析】【分析】(1)先确定A(-3,0),B(0,3),分别代入解析式,求得bc的值即可;(2)①利用对称轴与直线y=x+3的交点,确定点C(-1,2),代入解析式中,求的值;②分当m<1和m≥1两种情况解答即可;③根据b=m+1,结合前面的解答直接写出的范围即可.(1)∵直线分别与轴、轴交于点A(-3,0),B(0,3),A(-3,0),B(0,3)分别代入解析式,得解得∴抛物线的解析式为:(2)①∵的对称轴为直线,直线AB的解析式为y=x+3,∴点∵点和点重合,解得:②∵点,且点D在点C的下方,CD=2-()=∵点D在点C的下方,x=1时,轴,∴点F的纵坐标为==0,解得x== -1±|m-1|,时,x=-1+1-m=-m,此时,交点D不满足在C的下方,舍去;x=-1-1+m=m-2,EF=m≥1时,x=-1+m-1=m-2,此时,交点D不满足在C的下方,舍去;x=-1-m+1=-mEF=③∵==b=m+1,b=-(m+1)舍去,m≥1.【点睛】本题考查了待定系数法确定解析式,一元二次方程的解法,抛物线的平移,熟练掌握抛物线的性质,正确解方程是解题的关键. 

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试达标测试:

    这是一份冀教版九年级下册第30章 二次函数综合与测试达标测试,共26页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共26页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    数学第30章 二次函数综合与测试精练:

    这是一份数学第30章 二次函数综合与测试精练,共32页。试卷主要包含了若二次函数y=ax2+bx+c,抛物线的对称轴是,抛物线的顶点坐标为等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map