冀教版九年级下册第30章 二次函数综合与测试课时训练
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试课时训练,共24页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。
九年级数学下册第三十章二次函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )A. B. C. D.2、抛物线的对称轴是( )A.直线 B.直线 C.直线 D.直线3、在抛物线的图象上有三个点,,,则、、的大小关系为( )A. B. C. D.4、抛物线y=x2+4x+5的顶点坐标是( )A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)5、抛物线y=﹣2(x﹣3)2﹣4的对称轴是( )A.直线x=3 B.直线x=﹣3 C.直线x=4 D.直线x=﹣46、若点,都在二次函数的图象上,且,则的取值范围是( )A. B. C. D.7、已知二次函数y=ax2+bx+c的图象如图所示,则( )A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>08、二次函数的图象如图所示,则下列结论正确的是( )A.,, B.,, C.,, D.,,9、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )A.① B.② C.③ D.②③10、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将二次函数y=﹣x2+2图象向下平移3个单位,得到的函数图象顶点坐标为_____.2、点P(m,n)在对称轴为x=1的函数的图像上,则m-n的最大值为____.3、已知二次函数,若,则y的取值范围是______.4、将抛物线y=﹣2x2+3x+1向下平移3个单位,所得的抛物线的表达式是_____.5、二次函数的图象的顶点坐标为______.三、解答题(5小题,每小题10分,共计50分)1、 “互联网+”时代,网上购物备受消费者青睐,某网店专售一款电子玩具,其成本为每件100元,当售价为每件160元时,每月可销售200件.为了吸引更多买家,该网店采取降价措施,据市场调查反映:销售单价每降低1元,则每月可多销售5件,设每件电子玩具的售价为x元(x为正整数),每月销售量为y件.(1)直接写出y与x之间的函数关系式;(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?(3)该网店店主决定每月从利润中捐出500元资助贫困学生,为了保证捐款后每月利润不低于11500元,且让消费者得到最大的实惠,该如何确定该电子玩具的价格?2、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣2﹣101234…y…m03n305…其中,m= ,n= ;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;(3)观察函数图像:①写出该函数的一条性质 ;②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)3、已知二次函数.(1)把它配方成的形式,并写出它的开口方向、顶点的坐标;(2)作出函数的图象(列表描出五个关键点).…01234…… … 4、已知二次函数y=a(x﹣1)2﹣3(a≠0)的图象经过点(2,0).(1)求a的值.(2)求二次函数图象与x轴的交点坐标.5、如图,二次函数(m是实数,且)的图像与x轴交于A、B两点(点A在点B的左侧),其对称轴与x轴交于点C,已知点D位于第一象限,且在对称轴上,,点E在x轴的正半轴上,.连接ED并延长交y轴于点F,连接AF.(1)求A、B、C三点的坐标(用数字或含m的式子表示);(2)已知点Q在抛物线的对称轴上,当的周长的最小值等于,求m的值. -参考答案-一、单选题1、C【解析】【分析】由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.【详解】解:,抛物线开口向上,对称轴为,当时,随的增大而减小,在时,随的增大而减小,,解得,故选:C.【点睛】本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.2、C【解析】【分析】抛物线的对称轴为:,根据公式直接计算即可得.【详解】解:,其中:,,,,故选:C.【点睛】本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.3、C【解析】【分析】把三个点,,的横坐标代入解析式,然后比较函数值大小即可.【详解】解:把三个点,,的横坐标代入解析式得,;;;所以,,故选:C.【点睛】本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.4、D【解析】【分析】利用顶点公式(﹣,),进行解题.【详解】解:∵抛物线y=x2+4x+5∴x=﹣=﹣=﹣2,y==1∴顶点为(﹣2,1)故选:D.【点睛】此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).5、A【解析】【分析】直接利用抛物线y=﹣2(x﹣3)2﹣4,求得对称轴方程为:x=3.【详解】解:抛物线y=﹣2(x﹣3)2﹣4的对称轴方程为:直线x=3,故选:A.【点睛】本题考查了二次函数的性质与图象,解题的关键是掌握:二次函数的顶点式与对称轴的关系.6、D【解析】【分析】先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.【详解】抛物线的对称轴为直线,∵,,当点和在直线的右侧,则,解得,当点和在直线的两侧,则,解得,综上所述,的范围为.故选:D.【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.7、B【解析】【分析】根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.【详解】解:∵抛物线的开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴>0,∴b<0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∵抛物线与x轴有一个交点,∴Δ=0,故选:B.【点睛】本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.8、D【解析】【分析】首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.【详解】解:抛物线开口向上,,对称轴在轴右侧,与异号,,抛物线与轴交于正半轴,,故选:.【点睛】此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,①二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口.②一次项系数和二次项系数共同决定对称轴的位置.当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)③.常数项决定抛物线与轴交点. 抛物线与轴交于.9、B【解析】【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点M(a,b)在抛物线y=x(2-x)上, 当b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;当b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,∴a有两个相同的值,∴点M的个数为1,故②正确;当b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B.【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.10、B【解析】【分析】根据增长率问题的计算公式解答.【详解】解:第2年的销售量为,第3年的销售量为,故选:B.【点睛】此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.二、填空题1、(0,-1)【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】解:将二次函数y=-x2+2图象向下平移3个单位,得到y=-x2+2-3=-x2-1,顶点坐标为(0,-1),故答案为:(0,-1).【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象几何变换的法则是解答此题的关键.2、##0.25【解析】【分析】根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m−n的最大值,本题得以解决.【详解】解:∵二次函数y=x2+ax+2的对称轴为x=1,∴,解得a=-2,∴二次函数解析式为y=x2-2x+2,∵点P(m,n)在二次函数y=x2-2x+2的图象上,∴n=m2-2m+2,∴m−n=m−(m2-2m+2)=-m2+3m-2=−(m−)2+,∴当m=时,m−n取得最大值,此时m−n=,故答案为:.【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3、【解析】【分析】根据题目中的函数解析式和二次函数的性质可以求得y的取值范围.【详解】解:∵y=x2-4x+1=(x-2)2-3,抛物线开口向上,∴当x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,∵-1≤x≤4,2-(-1)=3,4-2=2,∴当x=-1时y取得最大值,当x=2时,y取得最小值,当x=-1时,y=6,当x=2时,y=-3,∴y的取值范围是-3≤y≤6,故答案为:-3≤y≤6.【点睛】本题考查了二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答.4、【解析】【分析】根据向下平移,纵坐标要减去3,即可得到答案.【详解】解:抛物线向下平移3个单位,抛物线的解析式为.故答案为:.【点睛】主要考查了函数图象的平移,解题的关键是要求熟练掌握平移的规律:左加右减,上加下减.5、【解析】【分析】根据的意义直接解答即可.【详解】解:二次函数的图象的顶点坐标是.故答案为.【点睛】本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:(a≠0)的顶点坐标为(0,c).三、解答题1、 (1)y= -5x+1000(2)当销售单价降低10元时,每月获得的利润最大,最大利润是12500元;(3)140元【解析】【分析】(1)根据总件数=基础件数+增加件数=200+5(160-x),列出关系式即可;(2)根据总利润=单件利润×销售件数,构造二次函数,配方法求最值即可;(3)先根据题意,构造出符合题意的不等式,把不等式转化为一元二次方程,求得两个根,根据抛物线的性质,确定不等式的解集,结合题意,确定价格即可.(1)∵售价为每件160元时,每月可销售200件,销售单价每降低1元,则每月可多销售5件,∴y=200+5(160-x)=-5x+1000.(2)根据题意,得w=(x-100)(-5x+1000)= ,∵抛物线开口向下,∴当x=150时,w有最大值,且为12500,此时应降价160-150=10元,故当销售单价降低10元时,每月获得的利润最大,最大利润是12500元.(3)根据题意,得-500≥11500,当-500=11500时,解得,,∵抛物线w= 开口向下,∴-500≥11500的解集为140≤x≤160,∴让消费者得到最大的实惠,该如何确定该电子玩具的价格x=140元.【点睛】本题考查了销售数量与价格的关系,二次函数解决利润问题,二次函数图像与不等式解集的关系,一元二次方程的解法,熟练掌握二次函数的构造方法和性质是解题的关键.2、 (1)5,4(2)见解析(3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3【解析】【分析】(1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;(2)描点、连线画出图象即可;(3)①根据图象即可求得;②根据图象即可求得.【小题1】解:把x=-2代入y=|x2-2x-3|,得y=5,∴m=5,把x=1代入y=|x2-2x-3|,得y=4,∴n=4,故答案为:5,4;【小题2】如图所示;【小题3】①函数的性质:图象具有对称性,对称轴是直线x=1;故答案为:图象具有对称性,对称轴是直线x=1;②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.【点睛】本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.3、 (1),开口向下,顶点的坐标为(2)见解析【解析】【分析】(1)按题目要求配方成顶点式,根据顶点式写出开口方向和顶点坐标;(2)根据解析式列表、描点、连线画二次函数图象(1)解:∵,∴开口向下,顶点的坐标为(2)列表:…01234……… 描点、连线如图,【点睛】本题考查了将二次函数化为顶点式,画二次函数图象,掌握顶点式的图象的性质是解题的关键.4、 (1)3(2)(2,0)和(0,0)【解析】【分析】(1)将(2,0)代入函数表达式,求出a值即可;(2)根据所得函数表达式,令y=0,求出x值,可得坐标.(1)解:∵二次函数y=a(x﹣1)2﹣3(a≠0)的图象经过点(2,0),∴0=a(2-1)2-3,解得:a=3;(2)由(1)可知:二次函数的表达式为y=3(x-1)2-3,令y=0,则3(x-1)2-3=0,解得:x=2或x=0,∴二次函数图象与x轴的交点坐标为(2,0)和(0,0).【点睛】本题考查了二次函数的表达式,与x轴的交点问题,解题的关键是求出函数表达式.5、 (1),,(2)【解析】【分析】(1)把代入函数解析式,可得,再利用因式分解法解方程可得的坐标,再求解函数的对称轴,可得的坐标;(2)先证明,利用相似三角形的性质求解,利用三角形的中位线定理再求解.再利用勾股定理求解,如图,当点、、三点共线时,的长最小,此时的周长最小.可得.再利用勾股定理列方程,解方程可得答案.(1)令 则, ∴,,∴对称轴为直线,∴.(2)在中, ,∴∠ODC=∠CBD, , ,. .∵轴,轴,∴.∵,∴.∴.在中,,∴,即.(负根舍去)∵点与点关于对称轴对称,∴.∴如图,当点、、三点共线时,的长最小,此时的周长最小.∴的周长的最小值为,∴的长最小值为,即.∵,∴.∴.∵,∴.【点睛】本题考查了二次函数与坐标轴的交点问题,二次函数图象的性质,相似三角形的性质与判定,勾股定理,根据对称性求最值,掌握二次函数图象的性质是解题的关键.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试当堂达标检测题,共31页。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试复习练习题,共33页。试卷主要包含了抛物线的顶点为,若点A等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共29页。