


初中第30章 二次函数综合与测试巩固练习
展开九年级数学下册第三十章二次函数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
A. B. C. D.
2、已知二次函数y=ax2+bx+c的图象如图所示,则( )
A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0
C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0
3、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是( )
A.4 B.2 C.6 D.3
4、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
5、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
A. B. C.3 D.或3
6、已知二次函数,当时,随的增大而减小,则的取值范围是( )
A. B. C. D.
7、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
8、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )
A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点
C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小
9、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
10、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米 B.10米 C.米 D.12米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.
2、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
3、如图,在平面直角坐标系中,Q是直线上的一个动点,将Q绕点P(0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.
4、二次函数的图像与x轴公共点的个数是______.
5、如果二次函数的图像上有两点(2,y1)和(4,y2),那么y1________y2.(填“>”、“=”或“<”)
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若 ,求点P的坐标;
(3)连接AC,求 PAC面积的最大值及此时点P的坐标.
2、如图,抛物线经过点,,.
(1)求抛物线的解析式;
(2)若点为第三象限内抛物线上的一点,设的面积为,求的最大值并求出此时点的坐标;
(3)设抛物线的顶点为,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
3、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%
(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
(2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)
4、 “互联网+”时代,网上购物备受消费者青睐,某网店专售一款电子玩具,其成本为每件100元,当售价为每件160元时,每月可销售200件.为了吸引更多买家,该网店采取降价措施,据市场调查反映:销售单价每降低1元,则每月可多销售5件,设每件电子玩具的售价为x元(x为正整数),每月销售量为y件.
(1)直接写出y与x之间的函数关系式;
(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主决定每月从利润中捐出500元资助贫困学生,为了保证捐款后每月利润不低于11500元,且让消费者得到最大的实惠,该如何确定该电子玩具的价格?
5、如图,在平面直角坐标系中,开口向上的抛物线与轴交于、两点,为抛物线的顶点,为坐标原点.若、()的长分别是方程的两根,且.
(1)求抛物线对应的二次函数的解析式;
(2)过点作交抛物线于点,求点的坐标;
(3)在(2)的条件下,过点任作直线交线段于点,设点、点到直线的距离分别为、,试求的最大值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
【详解】
解:,
抛物线开口向上,对称轴为,
当时,随的增大而减小,
在时,随的增大而减小,
,
解得,
故选:C.
【点睛】
本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
2、B
【解析】
【分析】
根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.
【详解】
解:∵抛物线的开口向上,
∴a>0,
∵抛物线的对称轴在y轴的右侧,
∴>0,
∴b<0,
∵抛物线与y轴的交点在x轴的上方,
∴c>0,
∵抛物线与x轴有一个交点,
∴Δ=0,
故选:B.
【点睛】
本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.
3、C
【解析】
【分析】
将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.
【详解】
解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2
∴函数图象一定经过点C(2,-2)
点C关于x轴对称的点的坐标为(2,2),连接,如图,
∵
∴
故选:C
【点睛】
本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.
4、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
5、C
【解析】
【分析】
把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
【详解】
解:,
向左平移个单位后的函数解析式为,
函数图象经过坐标原点,
,
解得.
故选:C.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
6、D
【解析】
【分析】
先求出对称轴x=,再由已知可得 b≥1,即可求b的范围.
【详解】
解:∵,
∴对称轴为直线x=b,开口向下,
在对称轴右侧,y随x的增大而减小,
∵当x>1时,y随x的增大而减小,
∴1不在对称轴左侧,
∴b≤1,
故选:D.
【点睛】
本题考查二次函数的图象与系数的关系,熟练掌握二次函数的图象及性质,充分理解对称轴与函数增减性之间的关系是解题的关键.
7、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
C.由图象可知,当x=1时,y=,故C不符合题意,
D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
故选:D.
【点睛】
本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
8、B
【解析】
【分析】
根据二次函数的图象与性质逐项分析即可.
【详解】
A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;
B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;
C、当a<0时, ,其顶点坐标为,当a=−1时,顶点坐标为(1,0 ),在x轴上,故命题错误;
D、由于,抛物线的对称轴为直线x=1,当a>0且x≥1时,y随x增大而增大,故命题错误.
故选:B
【点睛】
本题考查了二次函数的图象与性质、二次函数与一元二次方程的关系,熟练掌握这些知识是解题的关键.
9、C
【解析】
【分析】
抛物线的对称轴为:,根据公式直接计算即可得.
【详解】
解:,
其中:,,,
,
故选:C.
【点睛】
本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
10、B
【解析】
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
二、填空题
1、
【解析】
【分析】
首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.
【详解】
解:开口向下,
中,
与轴的交点纵坐标为3,
,
抛物线的解析式可以为:(答案不唯一).
故答案为:(答案不唯一).
【点睛】
本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.
2、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
3、
【解析】
【分析】
利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.
【详解】
解:作QM⊥y轴于点M,Q′N⊥y轴于N,
∵∠PMQ=∠PNQ′=∠QPQ′=90°,
∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,
∴∠QPM=∠PQ′N,
在△PQM和△Q′PN中,
,
∴△PQM≌△Q′PN(AAS),
∴PN=QM,Q′N=PM,
设Q(m,m+3),
∴PM=|m+2|,QM=|m|,
∴ON=|1-m|,
∴Q′(m+2,1−m),
∴OQ′2=(m+2)2+(1−m)2=m2+5,
当m=0时,OQ′2有最小值为5,
∴OQ′的最小值为,
故答案为:.
【点睛】
本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.
4、0
【解析】
【分析】
令,得到一元二次方程,根据一元二次方程根的判别式求解即可.
【详解】
令,则
二次函数的图像与x轴无公共点.
故答案为:0
【点睛】
本题考查了二次函数与轴的交点问题,转化为一元二次方程根的判别式求解是解题的关键.
5、
【解析】
【分析】
将题目所给两个x代入函数即可得出两个y,再比较大小.
【详解】
=2时:
时:
∴
故答案为:<
【点睛】
本题考查函数性质,掌握比较方法是关键.
三、解答题
1、 (1);
(2)P(,﹣2);
(3)面积的最大值为8,此时点P(﹣2,﹣5).
【解析】
【分析】
(1)由题意及抛物线解析式可得:,而,得出,,即可确定点A、B、C的坐标,利用交点式代入即可确定解析式;
(2)根据(1)中解析式可得抛物线的对称轴为,当时,点P、C的纵坐标相同,横坐标之和除以2为对称抽,即可求解;
(3)过点P作轴交AC于点H,设直线AC的解析式为:,将点、代入确定直线解析式,结合图象可得,与底为同底,高的和为OA长度,代入三角形面积得出,据此即可得出面积的最大值及此时点P的坐标.
(1)
解:抛物线,则,
∴,
∵,
∴,,
∴点A、B、C的坐标分别为、、,
∴,
将代入可得,
解得:,
∴,
故抛物线的表达式为:;
(2)
解:,
其中:,,,
∴抛物线的对称轴为,
∵,
∴点P、C的纵坐标相同,
∴根据函数的对称性得点;
(3)
解:过点P作轴交AC于点H,
设直线AC的解析式为:,
将点、代入可得:
,
解得:,
直线AC的解析式为:,
∴,
∴,
,
,
,
∵,
∴当时,,此时面积最大,
当时,
,
∴,
答:的面积最大为8,此时点.
【点睛】
题目主要考查利用待定系数法确定一次函数与二次函数解析式,二次函数图象的基本性质等,理解题意,结合图象作出相应辅助线,综合运用二次函数基本性质是解题关键.
2、 (1)
(2)当时,有最大值,此时点的坐标为
(3)在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
【解析】
【分析】
(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;
(2)过点作轴的垂线交于,过点作轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;
(3)分三种情况进行讨论:①以为直角顶点;②以为直角顶点;③以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.
(1)
解:抛物线经过点,,,
,解得.
抛物线的解析式为:;
(2)
如图,过点作轴的垂线交于,过点作轴的垂线,交于点.
设直线的解析式为,由题意,得
,解得,
直线的解析式为:.
设点坐标为,则点的坐标为,
.
,
,
当时,有最大值,此时点的坐标为;
(3)
解:在轴上是存在点,能够使得是直角三角形.理由如下:
,
顶点的坐标为,
,
.
设点的坐标为,分三种情况进行讨论:
①当为直角顶点时,如图3①,
由勾股定理,得,
即,
解得,
所以点的坐标为;
②当为直角顶点时,如图3②,
由勾股定理,得,
即,
解得,
所以点的坐标为;
③当为直角顶点时,如图3③,
由勾股定理,得,
即,
解得或,
所以点的坐标为或;
综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
【点睛】
本题考查了二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,解题的关键是运用数形结合、分类讨论及方程思想进行求解.
3、 (1)24元;
(2)当m=35时,w最大=7260元.
【解析】
【分析】
(1)设去年这种水果的批发价为x元/千克,今年的销量-去年的销量=1000列方程解方程即可;
(2)设每千克的平均销售价为m元,根据总利润=每千克利润×销量列函数关系式w=(m-24)(300+)配方为顶点式,利用函数性质求即即可.
(1)
解:设去年这种水果的批发价为x元/千克,
根据题意得:,
整理得:3000-2400=24x,
解得x=25,
经检验符合题意,
元;
(2)
解:设每千克的平均销售价为m元,
w=(m-24)(300+),
=,
=,
∵a=-60<0,
抛物线开口向下,函数有最大值,
当m=35时,w最大=7260元.
【点睛】
本题考查列分式方程解应用题,列二次函数解应用题,掌握列分式方程解应用题的方法与步骤,列二次函数解应用题方法是解题关键.
4、 (1)y= -5x+1000
(2)当销售单价降低10元时,每月获得的利润最大,最大利润是12500元;
(3)140元
【解析】
【分析】
(1)根据总件数=基础件数+增加件数=200+5(160-x),列出关系式即可;
(2)根据总利润=单件利润×销售件数,构造二次函数,配方法求最值即可;
(3)先根据题意,构造出符合题意的不等式,把不等式转化为一元二次方程,求得两个根,根据抛物线的性质,确定不等式的解集,结合题意,确定价格即可.
(1)
∵售价为每件160元时,每月可销售200件,销售单价每降低1元,则每月可多销售5件,
∴y=200+5(160-x)=-5x+1000.
(2)
根据题意,得w=(x-100)(-5x+1000)
= ,
∵抛物线开口向下,
∴当x=150时,w有最大值,且为12500,
此时应降价160-150=10元,
故当销售单价降低10元时,每月获得的利润最大,最大利润是12500元.
(3)
根据题意,得-500≥11500,
当-500=11500时,
解得,,
∵抛物线w= 开口向下,
∴-500≥11500的解集为140≤x≤160,
∴让消费者得到最大的实惠,该如何确定该电子玩具的价格x=140元.
【点睛】
本题考查了销售数量与价格的关系,二次函数解决利润问题,二次函数图像与不等式解集的关系,一元二次方程的解法,熟练掌握二次函数的构造方法和性质是解题的关键.
5、 (1)
(2)点的坐标为
(3)
【解析】
【分析】
(1)先求出的两根,可得点的坐标为,点的坐标为.从而得到的坐标为.再由.可得的坐标为.然后设抛物线对应的二次函数的解析式为.把点代入,即可求解;
(2)根据题意可设点的坐标为,则有.再由点在抛物线上,可得.从而得到,即可求解;
(3)由(2)知:,而,可得到,然后过点A作.根据三角形的面积,可得.再由,可得,即可求解.
(1)
解:如图,过点作轴于,则为的中点.
解方程得:或.
而,则点的坐标为,点的坐标为.
∴的坐标为.
又因为,
∴.
∴的坐标为.
设抛物线对应的二次函数的解析式为.
∵抛物线过点,则,解得:.
故抛物线对应的二次函数的解析式为.
(2)
∵,
∴.
又∵,
设点的坐标为,则有.
∵点在抛物线上,
∴.
化简得:.
解得:,(舍去).
故点的坐标为.
(3)
由(2)知:,而,
∴.
过点A作.
∵,
∴.
∵,
∴.
即此时的最大值为.
【点睛】
本题主要考查了二次函数与三角形的综合题,等腰三角形的性质,熟练掌握二次函数的图象和性质等腰三角形的性质是解题的关键.
冀教版九年级下册第30章 二次函数综合与测试课时作业: 这是一份冀教版九年级下册第30章 二次函数综合与测试课时作业,共31页。
初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练,共29页。试卷主要包含了已知点,若点A等内容,欢迎下载使用。
2020-2021学年第30章 二次函数综合与测试测试题: 这是一份2020-2021学年第30章 二次函数综合与测试测试题,共31页。