开学活动
搜索
    上传资料 赚现金

    难点解析冀教版九年级数学下册第三十章二次函数达标测试试卷(精选含详解)

    难点解析冀教版九年级数学下册第三十章二次函数达标测试试卷(精选含详解)第1页
    难点解析冀教版九年级数学下册第三十章二次函数达标测试试卷(精选含详解)第2页
    难点解析冀教版九年级数学下册第三十章二次函数达标测试试卷(精选含详解)第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试复习练习题

    展开

    这是一份冀教版九年级下册第30章 二次函数综合与测试复习练习题,共25页。试卷主要包含了若二次函数y=a,若点A,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是(       A.① B.② C.③ D.②③2、若二次函数轴的一个交点为,则代数式的值为(       A. B. C. D.3、若将抛物线y=2x2﹣1向上平移2个单位,则所得抛物线对应的函数关系式为(  )A.y=2(x﹣2)2﹣1 B.y=2(x+2)2﹣1 C.y=2x2﹣3 D.y=2x2+14、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,则杯子的高为(     A.14 B.11 C.6 D.35、若二次函数yaxb2ca≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则abc的值可能为(       A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣26、在同一坐标系内,函数ykx2ykx﹣2(k≠0)的图象大致如图(  )A. B.C. D.7、函数向左平移个单位后其图象恰好经过坐标原点,则的值为(       A. B. C.3 D.或38、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2x-1的图象上,则y1y2y3大小关系是(       A.y1y2><y3 B.y2y1y3 C.y3y1y2 D.y3y2y19、二次函数yax2﹣4axca>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是(       A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<010、如图,二次函数yax2+bx+ca≠0)图象与x轴交于AB两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有(       A.4个 B.3个 C.2个 D.1个第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、二次函数yax2bx+4的图象如图所示,则关于x的方程ax+1)2bx+1)=﹣4的根为______.2、将二次函数的图象先向左平移2个单位, 再向下平移5个单位, 则最终所得图象的函数表达式是____________.3、已知二次函数y=﹣x2+bx+c与一次函数ymx+n的图象相交于点A(﹣2,4)和点B(6,﹣2),则不等式﹣x2+bx+cmx+n的解集是 _____.4、将抛物线向右平移4个单位,所得到的抛物线的函数解析式是________.5、如果一条抛物线轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.三、解答题(5小题,每小题10分,共计50分)1、如图, 在平面直角坐标系 中, 直线 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.(1)用含 的代数式表示顶点 的坐标:(2)当顶点 内部, 且 时,求抛物线的表达式:(3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.2、在平面直角坐标系中,二次函数yax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).(1)求c的值,并用含a的代数式表示b(2)当a时.①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;②如图,抛物线yax2+bx+cx轴的左侧交点为C,作直线ACD为直线AC下方抛物线上一动点,与AC交于点F,作DMAC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.3、已知二次函数的图象经过点,对称轴是经过且平行于轴的直线.(1)求的值,(2)如图,一次函数的图象经过点,与轴相交于点,与二次函数的图象相交于另一点,若点与点关于抛物线对称轴对称,求一次函数的表达式.(3)根据函数图象直接写出时,的取值范围.4、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?5、某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)与销售单价x(元)是一次函数关系,其销售单价、日销售量的三组对应数值如下表:销售单价x(元)406080日销售量y(件)806040(1)求yx的函数关系式;(2)求公司销售该商品获得的最大日利润. -参考答案-一、单选题1、B【解析】【分析】把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.【详解】解:∵点Mab)在抛物线y=x(2-x)上, b=-3时,-3=a(2-a),整理得a2-2a-3=0,∵△=4-4×(-3)>0,∴有两个不相等的值,∴点M的个数为2,故①错误;b=1时,1=a(2-a),整理得a2-2a+1=0,∵△=4-4×1=0,a有两个相同的值,∴点M的个数为1,故②正确;b=3时,3=a(2-a),整理得a2-2a+3=0,∵△=4-4×3<0,∴点M的个数为0,故③错误;故选:B【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.2、D【解析】【分析】代入即可求出,则,进而可求出代数式的值.【详解】解:二次函数轴的一个交点为时,故选:D.【点睛】本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.3、D【解析】【分析】由题意知平移后的函数关系式为,进行整理即可.【详解】解:由题意知平移后的函数关系式为:故选D.【点睛】本题考查了二次函数图象的平移.解题的关键在于牢记二次函数图象平移时上加下减,左加右减.4、B【解析】【分析】首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.【详解】解:抛物线顶点的坐标为点的横坐标为代入,得到故选:B.【点睛】本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.5、A【解析】【分析】根据二次函数的平移性质得出a不发生变化,即可判断a=1.【详解】解:∵二次函数y=ax+b2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,a=1.故选:A【点睛】此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.6、B【解析】【分析】分别利用函数解析式分析图象得出答案.【详解】解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;B、两函数图象符合题意;C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.故选:B【点睛】此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.7、C【解析】【分析】把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.【详解】解:向左平移个单位后的函数解析式为函数图象经过坐标原点,解得故选:C.【点睛】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.8、B【解析】【分析】由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.【详解】解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,yx的增加而增大∴点A对称的点的坐标为故选B.【点睛】本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.9、C【解析】【分析】根据函数表达式得出函数的开口方向和对称轴,从而得到y3y2y4y1,再结合题目一一判断即可.【详解】解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,∵-2<0<2<3<5,y3y2y4y1y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,y2y4<0,则y1y3<0,选项C符合题意,y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,故选:C.【点睛】本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.10、B【解析】【分析】①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故ab+c=0,即可求解.【详解】解:①∵函数图象开口向下 又函数的对称轴在y轴右侧, ∵抛物线与y轴正半轴相交,c>0,abc<0,故原答案错误,不符合题意;②∵抛物线和x轴有两个交点,b2﹣4ac>0正确,符合题意;③∵点B坐标为(﹣1,0),且对称轴为x=1,∴点A(3,0),∴当y<0时,x<﹣1或x>3.故正确,符合题意;④∵函数的对称轴为:x=﹣=1,b=﹣2a∵点B坐标为(﹣1,0),ab+c=0,b=﹣2a 即3a+c=0,正确,符合题意;故选:B.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.二、填空题1、x=-5或x=0##【解析】【分析】根据图象求出方程ax2bx+4=0的解,再根据方程的特点得到x+1=-4或x+1=1,求出x的值即可.【详解】解:由图可知:二次函数yax2bx+4与x轴交于(-4,0)和(1,0),ax2bx+4=0的解为:x=-4或x=1,则在关于x的方程ax+1)2bx+1)=-4中,x+1=-4或x+1=1,解得:x=-5或x=0,即关于x的方程ax+1)2bx+1)=-4的解为x=-5或x=0,故答案为:x=-5或x=0.【点睛】本题考查的是抛物线与x轴的交点,能根据题意利用数形结合求出方程的解是解答此题的关键.2、【解析】【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】解:由题意得,最终所得图象的函数表达式是=故答案为:【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k (abc为常数,a≠0),确定其顶点坐标(hk),在原有函数的基础上“左加右减括号内,上加下减括号外”,熟练掌握这一规律是解答本题的关键.3、【解析】【分析】不等式﹣x2+bx+cmx+n的解集是二次函数在一次函数的图象上方部分x的范围;结合图形,找出二次函数图象在一次函数上面的自变量的取值就是不等式的解集.【详解】解:如图,∵两函数图象相交于点A(-2,4),B(6,-2),∴不等式﹣x2+bx+cmx+n的解集是故答案为:【点睛】本题主要考查了二次函数与不等式的关系,解答该题时,要具备很强的读图能力.4、y=(x-4)2【解析】【分析】先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线y=x2的顶点坐标为(0,0),向右平移4个单位后的图象的顶点坐标为(4,0),所以,所得图象的解析式为y=(x-4)2故答案为:y=(x-4)2【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.5、2【解析】【分析】首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可.【详解】解:∵,代入得:∴抛物线的顶点坐标为∵当时,即解得:∴抛物线x轴两个交点坐标为的“特征三角形”是等腰直角三角形,,即解得:故答案为:2.【点睛】此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标.三、解答题1、 (1)(2)(3)1<a<3【解析】【分析】(1)利用配方法将抛物线解析式化为顶点式即可解答;(2)求出点AB的坐标,利用三角形面积公式求解a值即可解答;(3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解(1)解:拋物线 ∴顶点C的坐标为(2)解:对于,当x=0时,y=5,当y=0时,x=5,A(5,0),B(0,5),∵顶点 内部, 且 a=2,∴拋物线的表达式为 (3)解:由题意,平移后的抛物线的顶点P的坐标为∵平移后的抛物线的顶 点 仍在 内,解得:1<a<3, 的取值范围为1<a<3.【点睛】本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.2、 (1)c=6;b=2a+4(2)①最小值为−,最大值为20;②D(−3,−).【解析】【分析】(1)分别把 A(0,6)和B(-2,-2)代入解析式,可得cb的值.(2)①当a时,此函数表达式为yx2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(xx2+x+6)则Fxx+6),得FD的值,设FDM的周长为l,则lDF+DM+MF,当FD最大时,周长最大,根据二次函数的性质可得最大值.(1)把(0,6)代入y=ax2+bx+cc=6.把(-2,-2)代入y=ax2+bx+6,得4a-2b+6=-2,b=2a+4.(2)①当a时,,且c=6∴函数表达式为yx2+x+6=,图象开口向上.∴顶点坐标为∵-4≤x≤2,∴当x=−时,y的最小值为−观察图象结合增减性,当x=2时,y有最大值,x=2代入yx2+x+6,y的最大值为20.②∵yx2+x+6,y=0,则x=-6或x=−∵点C在左侧,C(-6,0)设直线AC的解析式为y=kx+mA(0,6),C(-6,0)代入y=kx+m,得 解得k=1,m=6,y=x+6D(xx2+x+6)则Fxx+6)FDx+6−(x2+x+6)=−x2xOA=OC=6,∠AOC=90°,∴∠COA=90°,DFAO∴∠DFM=∠CAO=45°,DMFMFDFDM的周长为llDF+DM+MFFD最大时,周长最大,又∵又∵−<0且-6<x<0,x=-3时,FD有最大值,即此刻FDM周长最大.x=-3代入yx2+x+6,y=−D(−3,−).【点睛】本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.3、 (1)(2)(3)4、 (1)(2)一艘宽为4米,高出水面3米的货船,能从桥下通过,理由见解析.【解析】【分析】(1)根据抛物线经过原点,可设抛物线为再把把代入抛物线的解析式,利用待定系数法求解抛物线的解析式即可;(2)把代入抛物线的解析式求解函数值,再与3米进行比较,即可得到答案.(1)解:根据题意抛物线经过了原点,设抛物线为: 代入抛物线的解析式得: 解得: 所以抛物线为:(2)解:因为一艘宽为4米,高出水面3米的货船行驶时航线在正中间,所以当时,所以一艘宽为4米,高出水面3米的货船,能从桥下通过.【点睛】本题考查的是二次函数的实际应用,熟练的把实际生活中的问题化为数学问题,建立数学模型是解本题的关键.5、 (1)y=-x+120;(2)最大日利润是2025元.【解析】【分析】(1)根据题中所给的表格中的数据,利用待定系数法可得其关系式,也可以根据关系直接写出关系式;(2)根据利润等于每件的利润乘以件数,再利用配方法求得其最值.(1)解:设解析式为y=kx+b将(40,80)和(60,60)代入,可得解得:所以yx的关系式为y=-x+120;(2)解:设公司销售该商品获得的日利润为w元,w=(x-30)y=(x-30)(-x+120)=-x2+150x-3600=-(x-75)2+2025,x-30≥0,-x+120≥0,∴30≤x≤120,∵-1<0,∴抛物线开口向下,函数有最大值,∴当x=75时,w最大=2025,答:当销售单价是75元时,最大日利润是2025元.【点睛】本题考查的是有关函数的问题,涉及到的知识点有一次函数解析式的求解,二次函数的应用,在解题的过程中,注意正确找出等量关系是解题的关键,属于基础题目. 

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课后测评:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀课后测评,共32页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习:

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。

    数学冀教版第30章 二次函数综合与测试当堂达标检测题:

    这是一份数学冀教版第30章 二次函数综合与测试当堂达标检测题,共27页。试卷主要包含了抛物线的对称轴是,同一直角坐标系中,函数和,二次函数的最大值是,抛物线的顶点为等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map