初中数学冀教版九年级下册第30章 二次函数综合与测试当堂检测题
展开
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试当堂检测题,共29页。试卷主要包含了下列函数中,随的增大而减小的是,抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )A.秒 B.秒 C.秒 D.1秒2、二次函数的图象如图所示,则下列结论正确的是( )A.,, B.,, C.,, D.,,3、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为( )A.②③ B.②④ C.①②③ D.②③④4、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )A.14 B.11 C.6 D.35、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A. B.C. D.6、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )A. B. C. D.7、下列函数中,随的增大而减小的是( )A. B.C. D.8、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有( )A.4个 B.3个 C.2个 D.1个9、抛物线y=4(2x﹣3)2+3的顶点坐标是( )A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)10、已知二次函数的图象经过,,则b的值为( )A.2 B. C.4 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果二次函数的图像上有两点(2,y1)和(4,y2),那么y1________y2.(填“>”、“=”或“<”)2、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.3、如图,抛物线与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连接OQ.则线段OQ的最大值是______.4、最大值与最小值之和为_________.5、已知抛物线与轴交于A、B两点,对称轴与抛物线交于C,与轴交于点D,圆C的半径为1.8,G为圆C上一动点,P为AG的中点,则DP的最大值为_________. 三、解答题(5小题,每小题10分,共计50分)1、如图1,已知抛物线交x轴于A,B两点,交y轴于点C,点P是直线上一动点.(1)求直线的解析式;(2)若点P关于原点O的对称点Q刚好落在抛物线上,求点P的坐标;(3)如图2,连接,过点P作PEBC交x轴于点E,连接,将沿对折,点P的对应点恰好落在x轴上时,求点E的坐标.2、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.(1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;(2)若每日销售利润达到900元,售价为多少元?(3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?3、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.(1)求这条抛物线的解析式.(2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?4、已知:在直角坐标平面内,抛物线y=x2+bx+6经过x轴上两点A、B,点B的坐标为(3,0),与y轴相交于点C.求:(1)抛物线的表达式及顶点坐标;(2)△ABC的面积.5、已知二次函数y=a(x﹣1)2﹣3(a≠0)的图象经过点(2,0).(1)求a的值.(2)求二次函数图象与x轴的交点坐标. -参考答案-一、单选题1、A【解析】【分析】根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.【详解】解:由题意得,当h=3时,,解得,∴球不低于3米的持续时间是1-0.6=0.4(秒),故选:A.【点睛】此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.2、D【解析】【分析】首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.【详解】解:抛物线开口向上,,对称轴在轴右侧,与异号,,抛物线与轴交于正半轴,,故选:.【点睛】此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,①二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口.②一次项系数和二次项系数共同决定对称轴的位置.当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)③.常数项决定抛物线与轴交点. 抛物线与轴交于.3、D【解析】【分析】根据二次函数的图象及性质即可判断.【详解】解:由函数图象可知,抛物线开口向上,∴a>0,∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),∴抛物线与x轴另一个交点坐标为(3,0),∴当x>1时,y随x的增大而增大,故①错误;∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确;当x=2时,y=4a+2b+c<0,故③正确;当x=﹣1时,y=a﹣b+c=3a+c=0,∴c=﹣3a,∴﹣a>c,∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;正确的有②③④,故选:D.【点睛】本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.4、B【解析】【分析】首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.【详解】解:,抛物线顶点的坐标为,,点的横坐标为,把代入,得到,,.故选:B.【点睛】本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.5、D【解析】【分析】分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.【详解】解:∵四边形ABCD是矩形,∴AD=BC=4,∠A=∠C=90°,AD∥BC,∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,∴BD=2AD=8,当点P在AD上时,PE⊥BQS△PBQ =·BQ·PE=•(8-2t)•(4-t)•sin60°=(4-t)2(0<t<4),当点P在线段BD上时,QE’⊥BPS△PBQ=·BP·QE’=[12-2(t-4)]•(t-)sin60°=-t2+t-16(4<t≤8),观察图象可知,选项D满足条件,故选:D.【点睛】本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.6、D【解析】【分析】由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.【详解】解:由已知二次项系数等于1的一个二次函数,其图象与x轴交于两点(m,0),(n,0), 所以可设交点式y=(x-m)(x-n), 分别代入,, ∴ ∵0<m<n<3, ∴0<≤4 ,0<≤4 , ∵m<n, ∴ab不能取16 , ∴0<ab<16 ,故选D【点睛】本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.7、C【解析】【分析】根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.【详解】解:A.在中,y随x的增大而增大,故选项A不符合题意;B.在中,y随x的增大与增大,不合题意;C.在中,当x>0时,y随x的增大而减小,符合题意;D.在,x>2时,y随x的增大而增大,故选项D不符合题意;故选:C.【点睛】本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.8、B【解析】【分析】①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故a﹣b+c=0,即可求解.【详解】解:①∵函数图象开口向下∴ 又函数的对称轴在y轴右侧,∴ ∴ ∵抛物线与y轴正半轴相交,∴c>0,∴abc<0,故原答案错误,不符合题意;②∵抛物线和x轴有两个交点,∴b2﹣4ac>0正确,符合题意;③∵点B坐标为(﹣1,0),且对称轴为x=1,∴点A(3,0),∴当y<0时,x<﹣1或x>3.故正确,符合题意;④∵函数的对称轴为:x=﹣=1,∴b=﹣2a,∵点B坐标为(﹣1,0),∴a﹣b+c=0,而b=﹣2a,∴ 即3a+c=0,正确,符合题意;故选:B.【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.9、A【解析】【分析】根据顶点式的顶点坐标为求解即可【详解】解:抛物线的顶点坐标是故选A【点睛】本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.10、C【解析】【分析】由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.【详解】解: 二次函数的图象经过,, 二次函数图象的对称轴为: 解得: 故选C【点睛】本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.二、填空题1、【解析】【分析】将题目所给两个x代入函数即可得出两个y,再比较大小.【详解】=2时:时:∴故答案为:<【点睛】本题考查函数性质,掌握比较方法是关键.2、2.5.【解析】【分析】根据二次函数的对称轴公式直接计算即可.【详解】解:∵的对称轴为(min),故:最佳加工时间为2.5min,故答案为:2.5.【点睛】此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.3、【解析】【分析】连接PB,当B、C、P三点共线,且点C在PB之间时,PB最大,而OQ是△ABP的中位线,即可求解.【详解】令,则x=±4,故点B(4,0),∴OB=4设圆的半径为r,则r=2,连接PB,如图,∵点Q、O分别为AP、AB的中点,∴OQ是△ABP的中位线,当B、C、P三点共线,且点C在PB之间时,PB最大,此时OQ最大,∵C(0,3)∴OC=3在Rt△OBC中,由勾股定理得:则,故答案为3.5.【点睛】本题考查了抛物线与坐标轴的交点,三角形中位线定理,勾股定理,圆的基本性质等知识,连接PB并运用三角形中位线定理是本题的关键和难点.4、##【解析】【分析】将已知式子化成,分和两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.【详解】解:由得:,①当时,;②当时,则关于的方程根的判别式大于或等于0,即,整理得:,解方程得:,则对于二次函数,当时,的取值范围为,且,综上,的取值范围为,所以的最大值为3,最小值为,所以的最大值与最小值之和为,故答案为:.【点睛】本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.5、【解析】【分析】如图,连接BG.利用三角形的中位线定理证明DP=BG,求出BG的最大值,即可解决问题.【详解】解:如图,连接BG.∵AP=PG,AD=DB,∴DP=BG,∴当BG的值最大时,DP的值最大,∵,∴C(5,),B(9,0),∴BC==,当点G在BC的延长线上时,BG的值最大,最大值=+,∴DP的最大值为,故答案为:.【点睛】本题考查二次函数图象上的点的坐标特征,三角形中位线定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.三、解答题1、 (1)(2)或(3)或【解析】【分析】(1)根据抛物线的解析式令即可求得的坐标,令即可求得点的坐标,进而待定系数法求得直线的解析式;(2)由(1)设点,则在上,代入解方程即可求得的值,进而求得点的值;(3)先求得直线的解析式,进而表示出解析式,得点的坐标为,进而根据平行得,根据相似三角形的性质可得,根据勾股定理及逆定理证明是直角三角形,进而可得对称后的点与重合,进而可得,求得点的纵坐标,进而根据求得的值,即可求得点的坐标.(1)解:已知抛物线交x轴于A,B两点,交y轴于点C,令,得即令,即解得设直线的解析式为,将点代入得,解得直线的解析式为(2)点P是直线上一动点,直线的解析式为设点,点P关于原点O的对称点Q刚好落在抛物线上,则在上即解得或或(3)依题意,设点,设直线的解析式为,将点代入得,解得直线的解析式为PEBC设直线的解析式为令,,则点的坐标为,,PEBC是直角三角形将沿对折,点P的对应点恰好落在x轴上时,,与点重合,则,解得或即或解得或或 【点睛】本题考查了二次函数与坐标轴交点问题,轴对称问题,相似三角形的性质与判定,勾股定理及其逆定理,一次函数的平移问题,设参数求解是解题的关键.2、 (1)w=-3x2+360x-9600;(2)若每日销售利润达到900元,售价为50元;(3)当销售价为55元时,可以获得最大利润,为1125元.【解析】【分析】(1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;(2)根据(1)的关系式列出一元二次方程即可;(3)根据题中所给的自变量的取值得到二次的最值问题即可.(1)解:w=(x-40)[105-3(x-45)]=(x-40)(-3x+240)=-3x2+360x-9600,答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;(2)解:由题意得,w=-3x2+360x-9600=900,解得:x1=50,x2=70>55(舍),答:若每日销售利润达到900元,售价为50元;(3)解:w=-3x2+360x-9600=-3(x-60)2+1200,∵a=-3<0,∴抛物线开口向下.又∵对称轴为x=60,∴当x<60,w随x的增大而增大,由于50≤x≤55,∴当x=55时,w的最大值为1125元.∴当销售价为55元时,可以获得最大利润,为1125元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.3、 (1)(2)一艘宽为4米,高出水面3米的货船,能从桥下通过,理由见解析.【解析】【分析】(1)根据抛物线经过原点,可设抛物线为再把把代入抛物线的解析式,利用待定系数法求解抛物线的解析式即可;(2)把代入抛物线的解析式求解函数值,再与3米进行比较,即可得到答案.(1)解:根据题意抛物线经过了原点,设抛物线为: 把代入抛物线的解析式得: 解得: 所以抛物线为:(2)解:因为一艘宽为4米,高出水面3米的货船行驶时航线在正中间,所以当时,而所以一艘宽为4米,高出水面3米的货船,能从桥下通过.【点睛】本题考查的是二次函数的实际应用,熟练的把实际生活中的问题化为数学问题,建立数学模型是解本题的关键.4、 (1)(2)3【解析】【分析】(1)把点的坐标代入抛物线,即可得出抛物线的表达式;(2)先求出,,,再利用三角形面积公式求解即可.(1)解:把点的坐标代入抛物线,得,解得,所以抛物线的表达式:;(2)解:抛物线的表达式,令时,,解得:,,当,,,,.【点睛】本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式.5、 (1)3(2)(2,0)和(0,0)【解析】【分析】(1)将(2,0)代入函数表达式,求出a值即可;(2)根据所得函数表达式,令y=0,求出x值,可得坐标.(1)解:∵二次函数y=a(x﹣1)2﹣3(a≠0)的图象经过点(2,0),∴0=a(2-1)2-3,解得:a=3;(2)由(1)可知:二次函数的表达式为y=3(x-1)2-3,令y=0,则3(x-1)2-3=0,解得:x=2或x=0,∴二次函数图象与x轴的交点坐标为(2,0)和(0,0).【点睛】本题考查了二次函数的表达式,与x轴的交点问题,解题的关键是求出函数表达式.
相关试卷
这是一份初中冀教版第30章 二次函数综合与测试练习题,共32页。试卷主要包含了抛物线的对称轴是等内容,欢迎下载使用。
这是一份2021学年第30章 二次函数综合与测试巩固练习,共26页。试卷主要包含了已知点等内容,欢迎下载使用。
这是一份初中数学第30章 二次函数综合与测试课堂检测,共33页。试卷主要包含了若点A,抛物线的对称轴是等内容,欢迎下载使用。