![难点详解冀教版九年级数学下册第三十章二次函数章节测试试题(含详解)第1页](http://img-preview.51jiaoxi.com/2/3/12720812/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版九年级数学下册第三十章二次函数章节测试试题(含详解)第2页](http://img-preview.51jiaoxi.com/2/3/12720812/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点详解冀教版九年级数学下册第三十章二次函数章节测试试题(含详解)第3页](http://img-preview.51jiaoxi.com/2/3/12720812/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学九年级下册第30章 二次函数综合与测试当堂检测题
展开
这是一份数学九年级下册第30章 二次函数综合与测试当堂检测题,共33页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数章节测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
2、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
3、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
A. B. C.3 D.或3
4、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.米 B.10米 C.米 D.12米
5、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
A. B. C. D.
6、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是( )
A. B. C. D.
7、下列函数中,随的增大而减小的是( )
A. B.
C. D.
8、二次函数的自变量与函数值的部分对应值如下表:
…
-3
-2
-1
0
1
…
…
-11
-3
1
1
-3
…
对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
A.①② B.③④ C.①③ D.①②④
9、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
10、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+4x+c有两个相异的不动点x1,x2,且x1<3<x2,则c的取值范围是( )
A.c<﹣6 B.c<﹣18 C.c<﹣8 D.c<﹣11
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与x轴交于A,B两点.若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式为 ____________.
2、最大值与最小值之和为_________.
3、如图边长为n的正方形OABC的边OA、OC分别在x轴和y轴的正半轴上,A1、A2、A3、...、An﹣1为OA的n等分点,B1、B2、B3、...、Bn﹣1为CB的n等分点,连接A1B1、A2B2、A3B3、...、An﹣1Bn﹣1,分别交于点C1、C2、C3、...、Cn﹣1.当B25C25=8C25A25时,则n=_____.
4、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
5、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)
三、解答题(5小题,每小题10分,共计50分)
1、如图,隧道的截面由抛物线和长方形构成.长方形的长为,宽为,抛物线的最高点离路面的距离为.
(1)求抛物线的函数表达式;
(2)一大型货车装载设备后高为,宽为.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?
2、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.
(1)求这条抛物线的解析式.
(2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?
3、已知函数(为常数).
(1)若图象经过点,判断图象经过点吗?请说明理由;
(2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
(3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
4、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
(3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
5、己知二次函数.
(1)若此二次函数图象的对称轴为,求它的解析式;
(2)当时,y随x增大而减小,求k的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
【详解】
解:∵二次函数,当时,x的取值范围是,
∴,二次函数开口向下
解得,对称轴为
当时,,
经过原点,
根据函数图象可知,当,,
根据对称性可得时,
二次函数图象经过点,
或
不可能是4
故选C
【点睛】
本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
2、A
【解析】
【分析】
根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向
【详解】
解:∵的对称轴为,且
∴若,
则离对称轴远,则抛物线的开口朝下,即,故A正确
若,
则离对称轴远,则抛物线的开口朝上,即,故C不正确
对于B,D选项不能判断的符号
故选A
【点睛】
本题考查了二次函数图象的性质,掌握的性质是解题的关键.
3、C
【解析】
【分析】
把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
【详解】
解:,
向左平移个单位后的函数解析式为,
函数图象经过坐标原点,
,
解得.
故选:C.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
4、B
【解析】
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为-4,
∵水面AB宽为20米,
∴A(-10,-4),B(10,-4),
将A代入y=ax2,
-4=100a,
∴,
∴,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为-1,
∴
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.
5、C
【解析】
【分析】
由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
【详解】
解:,
抛物线开口向上,对称轴为,
当时,随的增大而减小,
在时,随的增大而减小,
,
解得,
故选:C.
【点睛】
本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
6、D
【解析】
【分析】
由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.
【详解】
解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,
得到:,,,,
A、,,,得,故选项错误,不符合题意;
B、对称轴为直线,得,解得,故选项错误,不符合题意;
C、当时,得,整理得:,故选项错误,不符合题意;
D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;
故选:D.
【点睛】
本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.
7、C
【解析】
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
8、A
【解析】
【分析】
根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
【详解】
解:把(-1,1),(1,-3),(-2,-3)代入,得
解得,
∴二次函数式为:
∵
∴二次函数的图像开口向下,故①正确;
∵
∴对称轴为直线
∴当时,随的增大而减小,故②正确;
当时,二次函数的最大值是,故③错误;
若,是二次函数图像与轴交点的横坐标,则,故④错误
∴正确的是①②
故答案为①②
【点睛】
本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
9、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c0,
∴其图象开口向上,
∵时,y随x 的增大而减小,
∴对称轴位于x=1的右侧或对称轴为直线x=1,
∴,
解得:.
【点睛】
此题考查的是二次函数的图象与系数的关系,掌握对称轴的概念、二次函数的图象的性质是解决此题关键.
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试习题,共29页。试卷主要包含了抛物线的顶点坐标为,抛物线的对称轴是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共28页。试卷主要包含了若点A,抛物线的对称轴是等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)