![难点解析冀教版九年级数学下册第三十章二次函数难点解析试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12720814/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第三十章二次函数难点解析试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12720814/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第三十章二次函数难点解析试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12720814/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试课时练习
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试课时练习,共40页。试卷主要包含了二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
九年级数学下册第三十章二次函数难点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
A.-2 B.-1 C.4 D.7
2、小明以二次函数的图象为灵感为“2017北京房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若,,则杯子的高为( )
A.14 B.11 C.6 D.3
3、如图,抛物线y=ax2+bx+c的顶点为P(﹣2,2),且与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),此时抛物线与y轴交于点A′,则AA′的长度为( )
A.2 B.3 C.3 D.D3
4、二次函数的图象如图所示,则下列结论正确的是( )
A.,, B.,, C.,, D.,,
5、若二次函数与轴的一个交点为,则代数式的值为( )
A. B. C. D.
6、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )
A. B.
C. D.
7、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
8、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )
A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
9、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )
A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0
10、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、请写出一个开口向下且过点(0,﹣4)的抛物线表达式为 _________________.
2、已知某函数的图象经过,两点,下面有四个推断:
①若此函数的图象为直线,则此函数的图象与直线平行;
②若此函数的图象为双曲线,则也在此函数的图象上;
③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
所有合理推断的序号是______.
3、抛物线y=(x﹣1)2+3的顶点坐标为___.
4、已知抛物线,将此二次函数解析式用配方法化成的形式得__________,此抛物线经过两点A(-2,y1)和,则与的大小关系是_____________.
5、如图,院子里有块直角三角形空地ABC,∠C=90°.直角边AC=3m、BC=4m,现准备修一个如图所示的矩形DEFG的养鱼池,当矩形DEFG面积最大时,EF的长为 _____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,抛物线经过点,,.
(1)求抛物线的解析式;
(2)若点为第三象限内抛物线上的一点,设的面积为,求的最大值并求出此时点的坐标;
(3)设抛物线的顶点为,在轴上是否存在点,使得是直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
2、如图,在平面直角坐标系中,抛物线与轴交于点,,与轴交于点,点为的中点.
(1)求该抛物线的函数表达式;
(2)若点是第四象限内该抛物线上一动点,求面积的最大值;
(3)是抛物线的对称轴上一点,是抛物线上一点,直接写出所有使得以点,,,为顶点的四边形是平行四边形的点的坐标,并把求其中一个点的坐标的过程写出来.
3、在平面直角坐标系中,抛物线交轴于点,点,(点在点的左侧),点是抛物线上一点.
(1)若,时,用含的式子表示;
(2)若,,,的外接圆为,求点的坐标和弧的长;
(3)在(1)的条件下,若有最小值,求此时的抛物线解折式
4、已知抛物线与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,点P为抛物线上一动点(点P不与点C重合).
(1)当为直角三角形时,求的面积
(2)如图,当时,过点P作轴于点Q,求BQ的长.
(3)当以点A,B,P为顶点的三角形和相似时(不包括两个三角形全等),求m的值.
5、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).
(1)请求出y(万件)与x(元/件)之间的函数关系式;
①求出当4≤x≤8时的函数关系式;
②求出当8<x≤28时的函数关系式.
(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;
(3)求出年利润的最大值.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
【详解】
解:∵二次函数,当时,x的取值范围是,
∴,二次函数开口向下
解得,对称轴为
当时,,
经过原点,
根据函数图象可知,当,,
根据对称性可得时,
二次函数图象经过点,
或
不可能是4
故选C
【点睛】
本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
2、B
【解析】
【分析】
首先由y=2x2-4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2-4x+8,得到y=14,所以CD=14-6=8,又DE=3,所以可知杯子高度.
【详解】
解:,
抛物线顶点的坐标为,
,
点的横坐标为,
把代入,得到,
,
.
故选:B.
【点睛】
本题主要考查了二次函数的应用,求出顶点D和点B的坐标是解决问题的关键.
3、B
【解析】
【分析】
先运用待定系数法求出原抛物线的解析式,再根据平移不改变二次项系数,得出平移后的抛物线解析式,求出A′的坐标,进而得出AA′的长度.
【详解】
∵抛物线y=ax2+bx+c的顶点为P(﹣2,2),
∴y=a(x+2)2+2,
∵与y轴交于点A(0,3),
∴3=a(0+2)2+2,解得a=
∴原抛物线的解析式为:y=(x+2)2+2,
∵平移该抛物线使其顶点P沿直线y=﹣x由(﹣2,2)移动到(1,﹣1),
∴平移后的抛物线为y=(x﹣1)2﹣1,
∴当x=0时,y=,
∴A′的坐标为(0,),
∴AA′的长度为:3﹣()=3.
故选:B.
【点睛】
本题考查了平移、二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解.
4、D
【解析】
【分析】
首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.
【详解】
解:抛物线开口向上,
,
对称轴在轴右侧,
与异号,
,
抛物线与轴交于正半轴,
,
故选:.
【点睛】
此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,
①二次项系数决定抛物线的开口方向和大小.
当时,抛物线向上开口;当时,抛物线向下开口.
②一次项系数和二次项系数共同决定对称轴的位置.
当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)
③.常数项决定抛物线与轴交点. 抛物线与轴交于.
5、D
【解析】
【分析】
把代入即可求出,则,进而可求出代数式的值.
【详解】
解:二次函数与轴的一个交点为,
时,,
,
,
故选:D.
【点睛】
本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
6、D
【解析】
【分析】
分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.
【详解】
解:∵四边形ABCD是矩形,
∴AD=BC=4,∠A=∠C=90°,AD∥BC,
∴∠ADB=∠DBC=60°,
∴∠ABD=∠CDB=30°,
∴BD=2AD=8,
当点P在AD上时,PE⊥BQ
S△PBQ =·BQ·PE
=•(8-2t)•(4-t)•sin60°
=(4-t)2(0<t<4),
当点P在线段BD上时,QE’⊥BP
S△PBQ=·BP·QE’
=[12-2(t-4)]•(t-)sin60°
=-t2+t-16(4<t≤8),
观察图象可知,选项D满足条件,
故选:D.
【点睛】
本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
7、C
【解析】
【分析】
根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
【详解】
解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
∵-2<0<2<3<5,
∴y3<y2<y4<y1,
若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
若y2y4<0,则y1y3<0,选项C符合题意,
若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
故选:C.
【点睛】
本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
8、B
【解析】
【分析】
根据二次函数图象左加右减,上加下减的平移规律进行求解.
【详解】
解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
再向上平移5个单位长度,得:y=(x﹣3)2+5,
故选:B.
【点睛】
本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
9、D
【解析】
【分析】
由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.
【详解】
解:二次函数的图象全部在轴的上方,
,,
,
,
.
,.
故选:D.
【点睛】
本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.
10、B
【解析】
【分析】
根据增长率问题的计算公式解答.
【详解】
解:第2年的销售量为,
第3年的销售量为,
故选:B.
【点睛】
此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
二、填空题
1、y=﹣x2﹣4(答案不唯一)
【解析】
【分析】
根据二次函数的性质,二次项系数小于0时,函数图象的开口向下,再利用过点(0,﹣4)得出即可.
【详解】
解:∵抛物线开口向下且过点(0,﹣4),
∴可以设顶点坐标为(0,﹣4),
故解析式为:y=﹣x2﹣4(答案不唯一).
故答案为:y=﹣x2﹣4(答案不唯一).
【点睛】
本题考查了二次函数图象的性质,是开放型题目,答案不唯一.
2、①②④
【解析】
【分析】
分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
【详解】
解:①过,两点的直线的关系式为y=kx+b,则
,
解得,
所以直线的关系式为y=x-1,
直线y=x-1与直线y=x平行,
因此①正确;
②过,两点的双曲线的关系式为,则,
所以双曲线的关系式为
当时,
∴也在此函数的图象上,
故②正确;
③若过,两点的抛物线的关系式为y=ax2+bx+c,
当它经过原点时,则有
解得,
对称轴x=-,
∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
当->时,抛物线与y轴的交点在负半轴,
因此③说法不正确;
④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
所以对称轴x=-=-=-,
因此函数图象对称轴在直线x=左侧,
故④正确,
综上所述,正确的有①②④,
故答案为:①②④.
【点睛】
本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
3、(1,3)
【解析】
【分析】
根据顶点式判断顶点即可.
【详解】
解:∵抛物线解析式为y=(x﹣1)2+3
∴顶点坐标是(1,3).
故答案为:(1,3)
【点睛】
本题考查了二次函数解析式---顶点式,明确的顶点坐标为(h,k)是解答本题的关键.
4、
【解析】
【分析】
(1)利用配方法将二次函数的一般式转化为顶点式;(2)将与分别代入二次函数解析式中,计算出与的值,并比较大小.
【详解】
(1)解:,
故答案为:.
(2)当 时,
当时,
∴ 与的大小关系是,
故答案为:.
【点睛】
本题考查用配方法将二次函数的一般式转化为顶点式,以及二次函数的增减性,熟练掌握配方法是解决本题的关键.
5、##
【解析】
【分析】
过点作,交于点,等面积法求得,设,进而根据得出比例式,根据矩形的面积为,得到关于的二次函数,根据二次函数的性质即可求得面积最大时的的值,进而求得的长.
【详解】
解:如图,过点作,交于点,
∠C=90°.直角边AC=3m、BC=4m,
设,则
四边形是矩形
,
整理得
设矩形的面积为,则
当取得最大值时,,此时
故答案为:
【点睛】
本题考查了矩形的性质,勾股定理,相似三角形的性质与判定,二次函数的性质,掌握以上知识是解题的关键.
三、解答题
1、 (1)
(2)当时,有最大值,此时点的坐标为
(3)在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
【解析】
【分析】
(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;
(2)过点作轴的垂线交于,过点作轴的垂线,交于点,先运用待定系数法求出直线的解析式,设点坐标为,根据的解析式表示出点的坐标,再根据就可以表示出的面积,运用顶点式就可以求出结论;
(3)分三种情况进行讨论:①以为直角顶点;②以为直角顶点;③以为直角顶点;设点的坐标为,根据勾股定理列出方程,求出的值即可.
(1)
解:抛物线经过点,,,
,解得.
抛物线的解析式为:;
(2)
如图,过点作轴的垂线交于,过点作轴的垂线,交于点.
设直线的解析式为,由题意,得
,解得,
直线的解析式为:.
设点坐标为,则点的坐标为,
.
,
,
当时,有最大值,此时点的坐标为;
(3)
解:在轴上是存在点,能够使得是直角三角形.理由如下:
,
顶点的坐标为,
,
.
设点的坐标为,分三种情况进行讨论:
①当为直角顶点时,如图3①,
由勾股定理,得,
即,
解得,
所以点的坐标为;
②当为直角顶点时,如图3②,
由勾股定理,得,
即,
解得,
所以点的坐标为;
③当为直角顶点时,如图3③,
由勾股定理,得,
即,
解得或,
所以点的坐标为或;
综上可知,在轴上存在点,能够使得是直角三角形,此时点的坐标为或或或.
【点睛】
本题考查了二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,解题的关键是运用数形结合、分类讨论及方程思想进行求解.
2、 (1)
(2)最大值为2
(3),,
【解析】
【分析】
(1)将点A,B坐标代入得方程组,求解即可;
(2)分别求出点B,C,D的坐标,运用待定系数法求出BC解析式,设,则,,根据三角形面积公式可得二次函数关系式,配方求解即可;
(3)分两种情况:①若AD是平行四边形的对角线,②若AD是平行四边形的边,分别进行讨论即可.
(1)
将,代入
,
解这个方程组得
∴该抛物线的函数表达式为
(2)
在中,当时,,
∴,
∵点D为线段BC的中点,且,
∴,即,
设直线BC的解析式为,
将,代入得,
解得,
∴直线BC的解析式为,
过点作轴交于点,
设,则
,
当时,有最大值为2
(3)
满足条件的点的坐标为:,,
由可得对称轴为:直线,
设,又,
①若AD是平行四边形的对角线,
当MN与AD互相平分时,四边形ANDM是平行四边形,
即MN经过AD的中点(),即(0,-1)
∴
∴n=-1,
∴,
②若AD是平行四边形的边,
Ⅰ.当NM∥AD且NM=AD时,四边形ANMD是平行四边形,
∵A(-2,0),D(2,2),点M的横坐标为1,
∴点N的横坐标为1-4=-3,
∴
∴点N的坐标为;
Ⅱ.当NM∥AD且NM=AD时,四边形AMND是平行四边形,
∵A(-2,0),D(2,2),点M的横坐标为1,
∴点N的横坐标为1+4=5,
∴
∴点N的坐标为;
综上所述,点M的坐标为,,.
【点睛】
本题是二次函数有关的综合题,主要考查了待定系数法求函数解析式,二次函数图象和性质,平行四边形性质等,熟练掌握待定系数法、二次函数图象和性质及平行四边形性质等相关知识,运用分类讨论思想和数形结合思想是解题关键.
3、 (1)
(2)E点坐标为,弧长为
(3)
【解析】
【分析】
(1)将,代入,计算求解即可;
(2)将与代入,得到,然后将解析式因式分解,得到点坐标分别为;如图,在直角坐标系中作,连接;点为中点,坐标为;点为中点,坐标为,,,有,,,,,得的值,进而可求出点坐标;,知,,AE= ,根据求解即可;
(3),知,, 最小时,有,解得值,故可得值,进而可得出抛物线的解析式.
(1)
解:将与代入
得
∴用含的式子表示为.
(2)
解:将与代入
得
∴
∴点坐标分别为
如图,作,连接
∴,
∴点为中点,坐标为即;点为中点,坐标为即
∵
∴
∴
∴
∵,,
∴
∴点坐标为
∵
∴
∴
∴AE=
∴的坐标为,的长为.
(3)
解:由题意知
∵,
∴
∵最小时,有解得
∴
∴.
【点睛】
本题考查了代数式,待定系数法求二次函数解析式,二次函数最值,三角形相似的判定与性质,三角形的外接圆,弧长等知识.解题的关键与难点在于对知识的熟练掌握并能灵活运用.
4、 (1)4
(2)2
(3)或m=
【解析】
【分析】
(1)先求出A、B、C三点的坐标,进而表示出AB、BC、AC的长,然后根据勾股定理求得m,确定C的坐标,最后运用三角形的面积公式解答即可;
(2)先用待定系数法求得BC所在直线直线的解析式,进而求得直线AP的解析式,然后与抛物线的解析式联立即可解答;
(3)先说明∠ABC=45°,然后分三种情况解答即可.
(1)
解:由抛物线开口向上,则m>0
令x=0,则y=-2,即C点坐标为(0,-2),OC=2
令y=0,则,解得x=-2或x=m,即点A(-2,0),点B(m,0)
∴OA=2,OB=m
∴AB=m+2
由勾股定理可得AC2=(-2-0)2+[0-(-2)]2=8, BC2=(m-0)2+[0-(-2)]2=m2+4
∵当为直角三角形时,仅有∠ACB=90°
∴AB2= AC2+BC2,即(m+2)2=8+m2+4,解得m=2
∴AB=m+2=4
∴的面积为:·AB·OC=×4×2=4.
(2)
解:设BC所在直线的解析式为:y=kx+b
则 ,解得
∴BC所在直线的解析式为y=x-2
设直线AP的解析式为y=x+c
则有:0=×(-2)+c,即c=
∴线AP的解析式为y=x+
联立 解得x=-2(A点横坐标),x=m+2(P点横坐标)
∴点P的纵坐标为:
∴点P的坐标为(m+2,)
∴OQ=m+2
∴BQ=OQ-OB= m+2-m=2.
(3)
解:∵点P为抛物线上一动点(点P不与点C重合).
∴设P(x,)
∵在△ABC中,∠BAC=45°
∴当以点A,B,P为顶点的三角形和相似时,有三种情况:
①a.若△ABC∽△BAP
∴
又∵BP=AC
∴△ABC∽△BAP不符合题意;
b. 若△ABP∽△BAC
∴
过P作PQ⊥x轴于点Q,则∠PQB=90°
∴∠BPQ=90°-∠PBQ=45°
∴PQ=BQ=m-x
由于PQ=
∴
∴
∴x-m=0或
∴x=m(舍去),x=-m-2
∴BQ=m-(-m-2)=2m+2
∵
∴
∴m2-4m-4=0,解得:m=或m=(舍去)
∴m=;
②当∠PAB=∠BAC=45°时,分两种情况讨论:
a. 若△ABP∽△ABC,则 ,点C与点P重合,不合题意;
b. 若△ABP∽△BAC,则 ,
过P作PQ⊥x轴于点Q,则∠PQA=90°
∴∠APQ=90°-∠PAB=45°
∴PQ=AQ=x+2
由于PQ=
∴
∴
∴x+2=0或
∴x=-2(舍去),x=2m
∴AQ= =2m+2
∵
∴
∴m2-4m-4=0,解得:m=(舍去)或m=
∴m=;
③当∠APB=∠BAC=45°时,分两种情况讨论:
a.过点A作PM//BC交抛物线于点M,则∠MAB=∠ABC,
∵∠MAB≠∠PAB,
∴∠PAB≠∠ABC,
∴△PAB与△BAC不相似;
b. 取点C关于x轴的对称点,连接并延长 交抛物线于点N,则∠NBA=∠CBA,
∵∠PBA≠∠NBA,
∴∠PBA≠∠CBA,
∴△PAB与△BAC不相似;
综上,m的值为m=或m=.
【点睛】
本题属于二次函数综合题,涉及抛物线与坐标轴的交点、勾股定理、三角形面积公式、运用待定系数法求一次函数解析式、相似三角形的判定等知识点,灵活应用相关知识成为解答本题的关键.
5、 (1)①y=;②y=-x+28
(2)w=160-640x(4≤x≤8)-(x-16)2+114(8
相关试卷
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试复习练习题,共30页。试卷主要包含了二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
这是一份2020-2021学年第30章 二次函数综合与测试课时作业,共33页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试习题,共29页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。