搜索
    上传资料 赚现金
    英语朗读宝

    难点详解冀教版九年级数学下册第三十章二次函数专题攻克试卷(无超纲带解析)

    难点详解冀教版九年级数学下册第三十章二次函数专题攻克试卷(无超纲带解析)第1页
    难点详解冀教版九年级数学下册第三十章二次函数专题攻克试卷(无超纲带解析)第2页
    难点详解冀教版九年级数学下册第三十章二次函数专题攻克试卷(无超纲带解析)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题

    展开

    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课后练习题,共35页。试卷主要包含了若点A,二次函数y=a+bx+c,若二次函数y=ax2+bx+c等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专题攻克
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在矩形ABCD中,,,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )

    A. B.
    C. D.
    2、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是( )

    A. B. C. D.
    3、二次函数的图象如图所示,则下列结论正确的是( )

    A.,, B.,, C.,, D.,,
    4、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
    A. B. C. D.
    5、抛物线的函数表达式为,若将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )
    A. B.
    C. D.
    6、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    7、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是(  )

    A.4 B.3 C.2 D.1
    8、二次函数的自变量与函数值的部分对应值如下表:


    -3
    -2
    -1
    0
    1



    -11
    -3
    1
    1
    -3

    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①② B.③④ C.①③ D.①②④
    9、若二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,1),(4,6),(3,1),则( )
    A.y≤3 B.y≤6 C.y≥-3 D.y≥6
    10、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知抛物线,点在抛物线上,则的最小值是______.
    2、将二次函数的图象先向左平移2个单位, 再向下平移5个单位, 则最终所得图象的函数表达式是____________.
    3、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.

    4、抛物线的顶点坐标是______.
    5、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣x2+4的图像上,那么m、n的大小关系是:m_____n.(填“>”、“=”或“<”)
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.

    (1)求该抛物线的解析式;
    (2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
    (3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
    2、已知二次函数y=x2-2x-3的图象为抛物线C.
    (1)写出抛物线C的开口方向、对称轴和顶点坐标;
    (2)当2≤x≤4时,求该二次函数的函数值y的取值范围;
    (3)将抛物线C先向右平移2个单位长度,得到抛物线C1;再将抛物线C1向下平移1个单位长度,得到抛物线C2,请直接写出抛物线C1,C2对应的函数解析式.
    3、生态水果是指在保护、改善农业生态环境的前提下,遵循生态学、生态经济学规律,运用现代科学技术,营养的、健康的水果.青岛市扶贫工作小组对李沧、胶州、即墨等多地果农进行精准投资建设,帮助果农将一种有机生态水果拓宽了市场,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了.批发销售总额比去年增加了20%
    (1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?
    (2)今年某水果店从果农处直接批发,专营这种水果.调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克.设水果店一天的利润为w元,当每千克的平均销售价为多少元时该水果店一天的利润最大(利润计算时,其它费用忽略不计,并且售价为整数)
    4、已知如图,二次函数的图像与x轴相交于点A、B两点,与y轴相交于点C,连接AC、BC,,抛物线的顶点为D.

    (1)求抛物线的解析式;
    (2)抛物线的对称轴上有一动点E,当取得最小值时,E点坐标为________;此时AE与BC的位置关系是________,________;
    (3)抛物线对称轴右侧的函数图像上是否存在点M,满足,若存在求M点的横坐标;若不存在,请说明理由;
    (4)若抛物线上一动点Q,当时,直接写出Q点坐标________.
    5、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
    (1)求的值;
    (2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
    (注:利润=(销售单价-进价)×销售量)

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    分别求出点P在AD,BD上,利用三角形面积公式构建关系式,可得结论.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AD=BC=4,∠A=∠C=90°,AD∥BC,
    ∴∠ADB=∠DBC=60°,
    ∴∠ABD=∠CDB=30°,
    ∴BD=2AD=8,
    当点P在AD上时,PE⊥BQ

    S△PBQ =·BQ·PE
    =•(8-2t)•(4-t)•sin60°
    =(4-t)2(0<t<4),
    当点P在线段BD上时,QE’⊥BP

    S△PBQ=·BP·QE’
    =[12-2(t-4)]•(t-)sin60°
    =-t2+t-16(4<t≤8),
    观察图象可知,选项D满足条件,
    故选:D.
    【点睛】
    本题考查了动点问题的函数图象:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图象,注意自变量的取值范围.
    2、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.
    【详解】
    解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,
    得到:,,,,
    A、,,,得,故选项错误,不符合题意;
    B、对称轴为直线,得,解得,故选项错误,不符合题意;
    C、当时,得,整理得:,故选项错误,不符合题意;
    D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;
    故选:D.
    【点睛】
    本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.
    3、D
    【解析】
    【分析】
    首先根据二次函数图象的开口方向确定,再根据对称轴在轴右,可确定与异号,然后再根据二次函数与轴的交点可以确定.
    【详解】
    解:抛物线开口向上,

    对称轴在轴右侧,
    与异号,

    抛物线与轴交于正半轴,

    故选:.
    【点睛】
    此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数,
    ①二次项系数决定抛物线的开口方向和大小.
    当时,抛物线向上开口;当时,抛物线向下开口.
    ②一次项系数和二次项系数共同决定对称轴的位置.
    当与同号时(即,对称轴在轴左; 当与异号时(即,对称轴在轴右.(简称:左同右异)
    ③.常数项决定抛物线与轴交点. 抛物线与轴交于.
    4、B
    【解析】
    【分析】
    由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
    【详解】
    解:由题意知,平移后的抛物线解析式为
    将代入解析式得,与A中点坐标不同,故不符合要求;
    将代入解析式得,与B中点坐标相同,故符合要求;
    将代入解析式得,与C中点坐标不同,故不符合要求;
    将代入解析式得,与D中点坐标不同,故不符合要求;
    故选B.
    【点睛】
    本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
    5、C
    【解析】
    【分析】
    此题可以转化为求将抛物线“向右平移3个单位长度,向上平移3个单位长度”后所得抛物线解析式,将抛物线直接利用二次函数的平移规律,左加右减,上加下减,进而得出答案.
    【详解】
    解:∵抛物线的顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线顶点坐标为 ,
    ∴将抛物线向右平移3个单位长度,向上平移3个单位长度后得到的抛物线的解析式为,
    ∴将y轴向左平移3个单位长度,将x轴向下平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为.
    故选:C
    【点睛】
    此题主要考查了二次函数图象与几何变换,正确掌握平移规律——左加右减,上加下减是解题关键.
    6、B
    【解析】
    【分析】
    由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
    【详解】
    解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
    ∴点A对称的点的坐标为


    故选B.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
    7、B
    【解析】
    【分析】
    看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.
    【详解】
    ∵抛物线与x轴有两个不同的交点,
    ∴﹣4ac>0;
    故①正确;
    ∵抛物线开口向下,与y轴交于正半轴,>0,
    ∴a<0,b>0, c>0,
    ∴abc<0;
    故②正确;
    ∵,
    ∴4a+b=0,
    故③正确;
    x= -2时,y=4a-2b+c,
    根据函数的增减性,得4a-2b+c<0;
    故④错误.
    故选B.
    【点睛】
    本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.
    8、A
    【解析】
    【分析】
    根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
    【详解】
    解:把(-1,1),(1,-3),(-2,-3)代入,得

    解得,
    ∴二次函数式为:

    ∴二次函数的图像开口向下,故①正确;

    ∴对称轴为直线
    ∴当时,随的增大而减小,故②正确;
    当时,二次函数的最大值是,故③错误;
    若,是二次函数图像与轴交点的横坐标,则,故④错误
    ∴正确的是①②
    故答案为①②
    【点睛】
    本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    9、C
    【解析】
    【分析】
    根据图像经过三点求出函数表达式,再根据最值的求法求出结果.
    【详解】
    解:∵二次函数y=ax2+bx+c经过(﹣1,1),(4,6),(3,1),
    ∴,
    解得:,
    ∴函数表达式为y=x2-2x-2,开口向上,
    ∴函数的最小值为=,即y≥-3,
    故选C.
    【点睛】
    本题考查了待定系数法求二次函数表达式,二次函数的最值,属于基础题,解题的关键是掌握二次函数最值的求法.
    10、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    二、填空题
    1、1
    【解析】
    【分析】
    把点代入得,再代入进行配方求解即可.
    【详解】
    解:∵点在抛物线上,



    ∴的最小值是1,
    故答案为:1
    【点睛】
    本题主要考查了二次函数的性质,能用含a的代数式表示出2a+b是解答本题的关键.
    2、
    【解析】
    【分析】
    按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
    【详解】
    解:由题意得,最终所得图象的函数表达式是=,
    故答案为:.
    【点睛】
    本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“左加右减括号内,上加下减括号外”,熟练掌握这一规律是解答本题的关键.
    3、##
    【解析】
    【分析】
    分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
    【详解】
    解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,

    可知:顶点B(9,12),抛物线经过原点,
    设抛物线的解析式为y=a(x-9)2+12,
    将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
    故抛物线的解析式为:y=-(x−9)²+12,
    ∵PC=12,=1:2,
    ∴点C的坐标为(12,0),AC=6,
    即可得点A的坐标为(12,6),
    当x=12时,y=−(12−9)²+12==CE,
    ∵E在A的正上方,
    ∴AE=CE-AC=-6=,
    故答案为:.
    【点睛】
    本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
    4、 (2,-1)
    【解析】
    【分析】
    先把抛物线配方为顶点式,再确定顶点坐标即可.
    【详解】
    解:,
    ∴抛物线的顶点坐标为(2,-1).
    故答案为(2,-1).
    【点睛】
    本题考查抛物线的顶点坐标,掌握抛物线配方为顶点式的方法是解题关键.
    5、
    【解析】
    【分析】
    先利用二次函数的性质得到抛物线的对称轴为轴,然后根据二次函数的性质解决问题.
    【详解】
    解:二次函数可知,抛物线开口向下,抛物线的对称轴为轴,
    所以当时,随的增大而增大,


    故答案为:.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.
    三、解答题
    1、 (1)
    (2)矩形PEDF周长的最大值为,此时点
    (3)或
    【解析】
    【分析】
    (1)将点,点,代入解析式,待定系数法求解析式即可;
    (2)根据题意转化为求最长时点的坐标,进而求得周长即可;
    (3)将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,进而得到平行后的新的抛物线的解析式,根据题意分情况讨论,根据的两个顶点恰好落在新抛物线上时,根据旋转可得若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,进而分类讨论,根据直线与抛物线交点问题,一元二次方程根与系数的关系求解即可.
    (1)
    解:将点,点,代入解析式,得

    解得
    抛物线的解析式为:
    (2)






    四边形是矩形


    设,则
    则矩形PEDF周长为,

    当取得最大值时,矩形PEDF周长的最大
    设直线的解析式为,将点代入得,

    解得
    直线的解析式为
    设,则




    当时,取得最大值,最大值为
    此时矩形PEDF周长为
    当时,


    (3)
    由(2)可知,则,
    过点作,则,

    将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,
    则新抛物线解析式为:

    将绕点Q顺时针方向旋转90°后得到,
    轴,
    旋转90°后,则轴
    则轴,
    若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,

    设直线为


    ①当在抛物线上时,如图,

    设点,的横坐标分别为,


    则为的两根
    即方程



    解得

    解得

    ②当在抛物线上时,如图,

    设点,的横坐标分别为,




    中,






    直线的解析式为
    设直线的解析式为
    则为的两根




    解得
    直线的解析式为

    解得
    当时,

    综上所述或
    【点睛】
    本题考查了待定系数法求二次函数解析式,解直角三角形,旋转的性质,矩形的性质,含30度角的直角三角形的性质,勾股定理,一次函数的平移问题,二次函数的平移问题,一元二次方程根与系数的关系,二次函数求函数值的问题,熟练掌握以上知识并正确的计算是解题的关键.
    2、 (1)开口向上,对称轴为直线,顶点坐标为
    (2)
    (3),
    【解析】
    【分析】
    (1)将二次函数化为顶点式,由此可得答案;
    (2)分别求出时,时的函数值,根据函数的增减性解答;
    (3)根据二次函数的平移规律解答.
    (1)
    解:∵,∴抛物线C的开口向上.
    ∵,
    ∴抛物线C的对称轴为直线,顶点坐标为.
    (2)
    解:当时,y随x的增大而增大;
    ∵当时,;当时,.
    ∴函数值y的取值范围是.
    (3)
    解:抛物线对应的函数解析式为;
    抛物线对应的函数解析式为.
    【点睛】
    此题考查了将二次函数化为顶点式,二次函数的性质,利用函数的增减求出函数值的取值范围,二次函数的平移规律,熟记各知识点是解题的关键.
    3、 (1)24元;
    (2)当m=35时,w最大=7260元.
    【解析】
    【分析】
    (1)设去年这种水果的批发价为x元/千克,今年的销量-去年的销量=1000列方程解方程即可;
    (2)设每千克的平均销售价为m元,根据总利润=每千克利润×销量列函数关系式w=(m-24)(300+)配方为顶点式,利用函数性质求即即可.
    (1)
    解:设去年这种水果的批发价为x元/千克,
    根据题意得:,
    整理得:3000-2400=24x,
    解得x=25,
    经检验符合题意,
    元;
    (2)
    解:设每千克的平均销售价为m元,
    w=(m-24)(300+),
    =,
    =,
    ∵a=-60<0,
    抛物线开口向下,函数有最大值,
    当m=35时,w最大=7260元.
    【点睛】
    本题考查列分式方程解应用题,列二次函数解应用题,掌握列分式方程解应用题的方法与步骤,列二次函数解应用题方法是解题关键.
    4、 (1)y=x2-4x+3;
    (2)(2,1);AE⊥BC,;
    (3)存在,M点的横坐标为或;
    (4)Q点的坐标为(,)或(,) .
    【解析】
    【分析】
    (1)求得点C的坐标和点B的坐标,利用待定系数法即可求解;
    (2)连接BC交对称轴于点E,此时AE+CE取得最小值,求得直线BC的解析式,即可求得E点坐标,进一步计算即可求解;
    (3)分类求解,利用tan∠ACB= tan∠BAM,求得G点坐标,利用待定系数法求得直线AG的解析式,联立方程即可求解;
    (4)先求得tan∠ACO=,同(3)的方法即可求解.
    (1)
    解:令x=0,则y=3,
    ∴点C的坐标为(0,3),即OC=1,
    ∵tan∠ABC=1,即,
    ∴OC=OB=1,
    ∴点B的坐标为(3,0),
    把B(3,0)代入y=x2+bx+3得32+3b+3=0,
    解得:b=-4,
    ∴抛物线的解析式为y=x2-4x+3;
    (2)
    解:y=x2-4x+3=(x-2)2-1,
    ∴顶点D的坐标为(2,-1),对称轴为x=2,
    解方程(x-2)2-1=0,得:x1=1,x2=3,
    ∴点A的坐标为(1,0),
    连接BC交对称轴于点E,此时,AE=BE,
    ∴AE+CE=BE+CE=BC,
    ∴AE+CE的最小值为BC,
    设直线BC的解析式为y=kx+3,
    把B(3,0)代入y=kx+3,得:0=3k+3,
    解得:k=-1,
    ∴直线BC的解析式为y=-x+3,
    当x=2时,y=1,
    ∴E点坐标为(2,1),
    ∵AE=,BE=,AB=3-1=2,

    ∴AE2+BE2=AB2,AE=BE,
    ∴△AEB为等腰直角三角形,
    ∴AE与BC的位置关系是:AE⊥BC,
    ∵CE=,
    ∴tan∠ACE=,
    故答案为:(2,1);AE⊥BC,;

    (3)
    解:设对称轴与x轴交于点F,交AM于点G,
    ∵∠ACB=∠BAM,
    ∴tan∠ACB= tan∠BAM,
    由(2)得tan∠ACE,
    ∴tan∠BAM=,
    ∵AF=OF-OA=1,
    ∴GF=,
    ∴G点坐标为(2,),
    同理求得直线AG的解析式为y=x-,
    解方程x-=x2-4x+3,得x1=1,x2=,
    ∴M点的横坐标为;
    当AM在x轴下方时,
    同理求得直线AG1的解析式为y=x+,
    解方程x+=x2-4x+3,得x1=1,x2=,
    ∴M1点的横坐标为;
    综上,存在,M点的横坐标为或;

    (4)
    解:∵OA=1,OC=3,
    ∴tan∠ACO=,
    同(3)得H点坐标为(2,),
    直线AQ的解析式为y=x-,
    解方程x-=x2-4x+3,得x1=1,x2=,
    ∴Q点的坐标为(,);
    当AQ在x轴下方时,
    同理求得直线AQ1的解析式为y=x+,
    解方程x+=x2-4x+3,得x1=1,x2=,
    ∴Q1点的坐标为(,);
    综上,Q点的坐标为(,)或(,).
    ,
    【点睛】
    本题是二次函数综合题,主要考查了待定系数法求函数解析式、解一元二次方程、解直角三角形等,要注意分类求解,避免遗漏.
    5、 (1)的值是500;
    (2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
    【解析】
    【分析】
    (1)根据利润=(销售单价-进价)×销售量列方程求解即可;
    (2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
    (1)
    解:由题意可得,,
    解得:,
    答:的值是500;
    (2)
    解:设利润为w元,
    由题意:,

    ∵-10

    相关试卷

    数学七年级下册第八章 整式乘法综合与测试复习练习题:

    这是一份数学七年级下册第八章 整式乘法综合与测试复习练习题,共17页。试卷主要包含了观察下列各式,下列计算正确的是等内容,欢迎下载使用。

    初中冀教版第二十章 函数综合与测试精练:

    这是一份初中冀教版第二十章 函数综合与测试精练,共22页。试卷主要包含了函数的图象如下图所示等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试达标测试:

    这是一份冀教版九年级下册第30章 二次函数综合与测试达标测试,共33页。试卷主要包含了下列函数中,二次函数是,已知点,,都在函数的图象上,则,下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map