|试卷下载
搜索
    上传资料 赚现金
    难点详解冀教版九年级数学下册第三十章二次函数综合测试练习题(无超纲)
    立即下载
    加入资料篮
    难点详解冀教版九年级数学下册第三十章二次函数综合测试练习题(无超纲)01
    难点详解冀教版九年级数学下册第三十章二次函数综合测试练习题(无超纲)02
    难点详解冀教版九年级数学下册第三十章二次函数综合测试练习题(无超纲)03
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练

    展开
    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试课时训练,共35页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数综合测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有( )

    A.4个 B.3个 C.2个 D.1个
    2、下列二次函数的图象中,顶点在第二象限的是( )
    A. B.
    C. D.
    3、抛物线y=x2+4x+5的顶点坐标是(  )
    A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)
    4、已知二次函数的图象经过,,则b的值为( )
    A.2 B. C.4 D.
    5、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )

    A.2 个 B.3 个 C.4 个 D.5 个.
    6、二次函数的图像如图所示,那么点在( )

    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    7、将抛物线的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
    A. B. C. D.
    8、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有(  )

    A.1个 B.2个 C.3个 D.4个
    9、已知二次项系数等于1的一个二次函数,其图象与x轴交于,两点,且过,两点.若,则ab的取值范围为( )
    A. B. C. D.
    10、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
    A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
    C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,抛物线与轴交于,两点,请写出一个使的的整数值 __.
    2、二次函数 y  2x21 的图象开口方向______.(填“向上”或“向下”)
    3、将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为 _____.
    4、这是小明在阅读一本关于函数的课外读物时看到的一段图文,则被墨迹污染的二次函数的二次项系数为______.由图像知,当x=﹣1时二次函数y=■x2+6x﹣5有最小值.

    5、如图,抛物线与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段PA的中点,连接OQ.则线段OQ的最大值是______.

    三、解答题(5小题,每小题10分,共计50分)
    1、某商店销售甲、乙两种礼品,每件利润分别为20元、10元,每天卖出件数分别为40件、80件.为适应市场需求,该店决定降低甲种礼品的售价,同时提高乙种礼品的售价.售卖时发现,甲种礼品单价每降1元可多卖4件,乙种礼品单价每提高1元就少卖2件.若每天两种礼品共卖出140件,则每天销售的最大利润是多少?
    (1)分析:设甲种礼品每件降低了x元,填写表格(用含x的式子表示,并化简);

    调价后的每件利润
    调价后的销售量
    甲种礼品


    乙种礼品


    (2)解答:
    2、2022年北京冬奥会即将召开,敢起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴建立平而直角坐标系,图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点О正上方3米处的A点滑出,滑出后沿一段抛物线运动.

    (1)当运动员运动到离A处的水平距离为4米时离水平线的高度为7米.求抛物线的函数表达式(不要求写出自变量工的取值范围);
    (2)在(1)的条件下.当运动员运动的水平距离为多少米时,运动员恰好落在小山坡的B处?
    3、如图,在平面直角坐标系中,抛物线与x轴交于点,点,与y轴交于点C.

    (1)求该抛物线的解析式;
    (2)点P为直线BC上方抛物线上的一点,过P点作轴,交BC于点D,点E在直线BC上,且四边形PEDF为矩形,求矩形PEDF周长的最大值以及此时点P的坐标;
    (3)在(2)问的条件下,将抛物线沿射线EP方向平移个单位长度得到新抛物线,Q为平面内一点,将绕点Q顺时针方向旋转90°后得到,若的两个顶点恰好落在新抛物线上时,直接写出此时点的坐标,并把求其中一个点的坐标过程写出来.
    4、在平面直角坐标系中,抛物线交轴于点,点,(点在点的左侧),点是抛物线上一点.
    (1)若,时,用含的式子表示;
    (2)若,,,的外接圆为,求点的坐标和弧的长;
    (3)在(1)的条件下,若有最小值,求此时的抛物线解折式
    5、如图,抛物线y=﹣与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.

    (1)求点A、点B、点C的坐标;
    (2)求直线BD的解析式;
    (3)当点P在线段OB上运动时,直线l交BD于点M,试探究m为何值时,四边形CQMD是平行四边形;
    (4)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    ①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故a﹣b+c=0,即可求解.
    【详解】
    解:①∵函数图象开口向下

    又函数的对称轴在y轴右侧,


    ∵抛物线与y轴正半轴相交,
    ∴c>0,
    ∴abc<0,故原答案错误,不符合题意;
    ②∵抛物线和x轴有两个交点,
    ∴b2﹣4ac>0正确,符合题意;
    ③∵点B坐标为(﹣1,0),且对称轴为x=1,
    ∴点A(3,0),
    ∴当y<0时,x<﹣1或x>3.故正确,符合题意;
    ④∵函数的对称轴为:x=﹣=1,
    ∴b=﹣2a,
    ∵点B坐标为(﹣1,0),
    ∴a﹣b+c=0,
    而b=﹣2a,

    即3a+c=0,正确,符合题意;
    故选:B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.
    2、C
    【解析】
    【分析】
    根据二次函数的顶点式求得顶点坐标,即可判断.
    【详解】
    解:A.二次函数的顶点为(1,3),在第一象限,不合题意;
    B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;
    C.二次函数的顶点为(﹣1,3),在第二象限,符合题意;
    D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;
    故选:C.
    【点睛】
    本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
    3、D
    【解析】
    【分析】
    利用顶点公式(﹣,),进行解题.
    【详解】
    解:∵抛物线y=x2+4x+5
    ∴x=﹣=﹣=﹣2,y==1
    ∴顶点为(﹣2,1)
    故选:D.
    【点睛】
    此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).
    4、C
    【解析】
    【分析】
    由二次函数的图象经过,,可得二次函数图象的对称轴为 再结合对称轴方程的公式列方程求解即可.
    【详解】
    解: 二次函数的图象经过,,
    二次函数图象的对称轴为:
    解得:
    故选C
    【点睛】
    本题考查的是二次函数的对称轴方程,掌握“利用纵坐标相等的两个点求解对称轴方程”是解本题的关键.
    5、C
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    6、C
    【解析】
    【分析】
    根据对称轴的位置、开口方向、与y轴的交点的位置即可判断出a、b、c的符号,进而求出的符号.
    【详解】
    由函数图像可得:
    ∵抛物线开口向上,
    ∴a>0,
    又∵对称轴在y轴右侧,
    ∴,
    ∴b<0,
    又∵图象与y轴交于负半轴,
    ∴c<0,

    ∴在第三象限
    故选:C
    【点睛】
    考查二次函数y=ax2+bx+c系数符号的确定.根据对称轴的位置、开口方向、与y轴的交点的位置判断出a、b、c的符号是解题的关键.
    7、B
    【解析】
    【分析】
    由题意知,平移后的抛物线解析式为,将各选项中的横坐标代入,求出纵坐标并与各选项的纵坐标比较,纵坐标相同的即为正确答案.
    【详解】
    解:由题意知,平移后的抛物线解析式为
    将代入解析式得,与A中点坐标不同,故不符合要求;
    将代入解析式得,与B中点坐标相同,故符合要求;
    将代入解析式得,与C中点坐标不同,故不符合要求;
    将代入解析式得,与D中点坐标不同,故不符合要求;
    故选B.
    【点睛】
    本题考查了二次函数图象的平移.解题的关键在于写出平移后的二次函数解析式.
    8、C
    【解析】
    【分析】
    根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.
    【详解】
    解:∵图象开口向下,
    ∴a<0,
    ∵对称轴为直线x=1,
    ∴−=1,
    ∴b=−2a>0,
    ∵图象与y轴的交点在x轴的上方,
    ∴c>0,
    ∴abc<0,
    ∴①说法正确,
    由图象可知抛物线与x轴有两个交点,
    ∴b2−4ac>0,
    ∴②错误,
    由图象可知,当x=−2时,y<0,
    ∴4a−2b+c=4a−2(−2a)+c=8a+c<0,
    ∴③正确,
    由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,
    ∵对称轴是x=1,
    ∴另一个根为x=5,
    ∴④正确,
    ∴正确的有①③④,
    故选:C.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.
    9、D
    【解析】
    【分析】
    由题意可设抛物线为y=(x-m)(x-n),则,再利用二次函数的性质可得答案.
    【详解】
    解:由已知二次项系数等于1的一个二次函数,
    其图象与x轴交于两点(m,0),(n,0),
    所以可设交点式y=(x-m)(x-n),
    分别代入,,



    ∵0<m<n<3,
    ∴0<≤4 ,0<≤4 ,
    ∵m<n,
    ∴ab不能取16 ,
    ∴0<ab<16 ,
    故选D
    【点睛】
    本题考查的是二次函数的图象与性质,根据二次函数的性质得到是解本题的关键.
    10、A
    【解析】
    【分析】
    根据二次函数的平移性质得出a不发生变化,即可判断a=1.
    【详解】
    解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
    ∴a=1.
    故选:A.
    【点睛】
    此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
    二、填空题
    1、2(答案不唯一)
    【解析】
    【分析】
    根据函数图象可以直接得到答案.
    【详解】
    解:如图,

    在平面直角坐标系中,抛物线与轴交于,两点,
    则当的的取值范围是:,
    的值可以是2.
    故答案为:2(答案不唯一).
    【点睛】
    此题考查了抛物线与x轴的交点坐标,需要学生熟悉二次函数图象的性质并要求学生具备一定的读图能力.
    2、向上
    【解析】
    【分析】
    根据二次函数图象的性质,a>0,抛物线开口向上,a<0,抛物线开口向下可求解.
    【详解】
    ∵a=2>0,
    ∴二次函数y=2x2+1图象的开口方向是向上,
    故答案为:向上.
    【点睛】
    本题主要考查二次函数的图象与性质,由a的符号确定抛物线的开口方向是解题的关键.
    3、y=﹣2(x﹣1)2+3
    【解析】
    【分析】
    按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
    【详解】
    解:将抛物线y=﹣2(x+2)2+5向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为:y=﹣2(x+2﹣3)2+5﹣2,即y=﹣2(x﹣1)2+3.
    故答案为:y=﹣2(x﹣1)2+3.
    【点睛】
    此题考查了抛物线的平移规律:左加右减,上加下减,熟记规律是正确解题的关键.
    4、
    【解析】
    【分析】
    由图象可得:抛物线的对称轴为: 再利用抛物线的对称轴公式建立方程求解即可.
    【详解】
    解:由图象可得:抛物线的对称轴为:


    解得:
    故答案为:
    【点睛】
    本题考查的是二次函数的图象与性质,掌握“利用二次函数的对称轴方程求解未知系数的值”是解本题的关键.
    5、
    【解析】
    【分析】
    连接PB,当B、C、P三点共线,且点C在PB之间时,PB最大,而OQ是△ABP的中位线,即可求解.
    【详解】
    令,则x=±4,
    故点B(4,0),
    ∴OB=4
    设圆的半径为r,则r=2,
    连接PB,如图,
    ∵点Q、O分别为AP、AB的中点,
    ∴OQ是△ABP的中位线,
    当B、C、P三点共线,且点C在PB之间时,PB最大,此时OQ最大,
    ∵C(0,3)
    ∴OC=3
    在Rt△OBC中,由勾股定理得:
    则,
    故答案为3.5.

    【点睛】
    本题考查了抛物线与坐标轴的交点,三角形中位线定理,勾股定理,圆的基本性质等知识,连接PB并运用三角形中位线定理是本题的关键和难点.
    三、解答题
    1、 (1)①,②,③
    (2)每天获得的最大利润为元.
    【解析】
    【分析】
    (1)设甲种礼品每件降低了x元,则调价后的销售量为原销量加上增加的销量,可得乙的销量为件,再求解乙调价后的利润即可;
    (2)设每天的销售利润为元,再利用总利润等于甲礼品的利润加上乙礼品的利润,可得函数关系式,再利用二次函数的性质可得答案.
    (1)
    解:设甲种礼品每件降低了x元,则调价后的销售量为:件,
    乙种礼品调价后的销售量为:件,
    乙种礼品调价后的利润为:元,
    填表如下:

    调价后的每件利润
    调价后的销售量
    甲种礼品


    乙种礼品



    (2)
    解:设每天的销售利润为元,则



    当时,
    (元)
    所以每天获得的最大利润为元.
    【点睛】
    本题考查的是列代数式,二次函数的实际应用,理解题意,列出二次函数的关系式是解本题的关键.
    2、 (1)
    (2)运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处
    【解析】
    【分析】
    (1)运用待定系数法求解即可;
    (2)设运动员运动的水平距离为m米时,依题意列出方程求解即可.
    (1)
    由题意可知抛物线过点和,将其代人得:

    解得: ,
    ∴抛物线的函数表达式为:
    (2)
    设运动员运动的水平距离为m米时,依题意得:

    整理得:,
    解得: (舍去),
    故运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处.
    【点睛】
    本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.
    3、 (1)
    (2)矩形PEDF周长的最大值为,此时点
    (3)或
    【解析】
    【分析】
    (1)将点,点,代入解析式,待定系数法求解析式即可;
    (2)根据题意转化为求最长时点的坐标,进而求得周长即可;
    (3)将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,进而得到平行后的新的抛物线的解析式,根据题意分情况讨论,根据的两个顶点恰好落在新抛物线上时,根据旋转可得若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,进而分类讨论,根据直线与抛物线交点问题,一元二次方程根与系数的关系求解即可.
    (1)
    解:将点,点,代入解析式,得

    解得
    抛物线的解析式为:
    (2)






    四边形是矩形


    设,则
    则矩形PEDF周长为,

    当取得最大值时,矩形PEDF周长的最大
    设直线的解析式为,将点代入得,

    解得
    直线的解析式为
    设,则




    当时,取得最大值,最大值为
    此时矩形PEDF周长为
    当时,


    (3)
    由(2)可知,则,
    过点作,则,

    将抛物线沿射线EP方向平移个单位长度得到新抛物线,即沿轴正方向向上平移, 轴正方向向右平移个单位,
    则新抛物线解析式为:

    将绕点Q顺时针方向旋转90°后得到,
    轴,
    旋转90°后,则轴
    则轴,
    若的两个顶点恰好落在新抛物线上时,只有或落在抛物线上,

    设直线为


    ①当在抛物线上时,如图,

    设点,的横坐标分别为,


    则为的两根
    即方程



    解得

    解得

    ②当在抛物线上时,如图,

    设点,的横坐标分别为,




    中,






    直线的解析式为
    设直线的解析式为
    则为的两根




    解得
    直线的解析式为

    解得
    当时,

    综上所述或
    【点睛】
    本题考查了待定系数法求二次函数解析式,解直角三角形,旋转的性质,矩形的性质,含30度角的直角三角形的性质,勾股定理,一次函数的平移问题,二次函数的平移问题,一元二次方程根与系数的关系,二次函数求函数值的问题,熟练掌握以上知识并正确的计算是解题的关键.
    4、 (1)
    (2)E点坐标为,弧长为
    (3)
    【解析】
    【分析】
    (1)将,代入,计算求解即可;
    (2)将与代入,得到,然后将解析式因式分解,得到点坐标分别为;如图,在直角坐标系中作,连接;点为中点,坐标为;点为中点,坐标为,,,有,,,,,得的值,进而可求出点坐标;,知,,AE= ,根据求解即可;
    (3),知,, 最小时,有,解得值,故可得值,进而可得出抛物线的解析式.
    (1)
    解:将与代入


    ∴用含的式子表示为.
    (2)
    解:将与代入



    ∴点坐标分别为
    如图,作,连接

    ∴,
    ∴点为中点,坐标为即;点为中点,坐标为即




    ∵,,

    ∴点坐标为



    ∴AE=

    ∴的坐标为,的长为.
    (3)
    解:由题意知
    ∵,




    ∵最小时,有解得

    ∴.
    【点睛】
    本题考查了代数式,待定系数法求二次函数解析式,二次函数最值,三角形相似的判定与性质,三角形的外接圆,弧长等知识.解题的关键与难点在于对知识的熟练掌握并能灵活运用.
    5、 (1)A(﹣1,0),B(4,0),C(0,2)
    (2)y=x﹣2
    (3)当m=2时,四边形CQMD是平行四边形
    (4)存在,(3,2),(8,﹣18),(﹣1,0)
    【解析】
    【分析】
    (1)根据函数解析式列方程即可得到结论;
    (2)由点C与点D关于x轴对称,得到D(0,﹣2),解方程即可得到结论;
    (3)如图1所示:根据平行四边形的性质得到QM=CD,设点Q的坐标为(m,﹣m2+m+2),则M(m,m﹣2),列方程即可得到结论;
    (4)设点Q的坐标为(m,﹣m2+m+2),分两种情况:①当∠QBD=90°时,根据勾股定理列方程求得m=3,m=4(不合题意,舍去),②当∠QDB=90°时,根据勾股定理列方程求得m=8,m=﹣1,于是得到结论.
    (1)
    解:∵令x=0得;y=2,
    ∴C(0,2).
    ∵令y=0得:﹣x2+x+2=0,
    解得:x1=﹣1,x2=4.
    ∴A(﹣1,0),B(4,0).
    (2)
    解:∵点C与点D关于x轴对称,
    ∴D(0,﹣2).
    设直线BD的解析式为y=kx﹣2.
    ∵将(4,0)代入得:4k﹣2=0,
    ∴k=.
    ∴直线BD的解析式为y=x﹣2.
    (3)
    解:如图1所示:

    ∵,
    ∴当QM=CD时,四边形CQMD是平行四边形.
    设点Q的坐标为(m,﹣m2+m+2),
    则M(m,m﹣2),
    ∴﹣m2+m+2﹣(m﹣2)=4,
    解得:m=2,m=0(不合题意,舍去),
    ∴当m=2时,四边形CQMD是平行四边形;
    (4)
    解:存在,设点Q的坐标为(m,﹣m2+m+2),
    ∵△BDQ是以BD为直角边的直角三角形,
    ∴①当∠QBD=90°时,
    由勾股定理得:BQ2+BD2=DQ2,
    即(m﹣4)2+(﹣m2+m+2)2+20=m2+(﹣m2+m+2+2)2,
    解得:m=3,m=4(不合题意,舍去),
    ∴Q(3,2);
    ②当∠QDB=90°时,
    由勾股定理得:BQ2=BD2+DQ2,
    即(m﹣4)2+(﹣m2+m+2)2=20+m2+(﹣m2+m+2+2)2,
    解得:m=8,m=﹣1,
    ∴Q(8,﹣18),(﹣1,0),
    综上所述:点Q的坐标为(3,2),(8,﹣18),(﹣1,0).
    【点睛】
    此题考查了求抛物线与坐标轴的交点,求一次函数的解析式,平行四边形的性质,解一元二次方程,勾股定理的应用,解题的关键是理解题意,综合掌握各知识点并应用解决问题.

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试课后复习题: 这是一份冀教版九年级下册第30章 二次函数综合与测试课后复习题,共26页。试卷主要包含了一次函数与二次函数的图象交点,抛物线,,的图象开口最大的是等内容,欢迎下载使用。

    2020-2021学年第30章 二次函数综合与测试课时作业: 这是一份2020-2021学年第30章 二次函数综合与测试课时作业,共33页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试课时训练: 这是一份冀教版九年级下册第30章 二次函数综合与测试课时训练,共28页。试卷主要包含了下列函数中,二次函数是,二次函数的最大值是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map