|试卷下载
搜索
    上传资料 赚现金
    难点解析冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含答案)
    立即下载
    加入资料篮
    难点解析冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含答案)01
    难点解析冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含答案)02
    难点解析冀教版九年级数学下册第三十章二次函数同步训练试卷(精选含答案)03
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试课后作业题

    展开
    这是一份冀教版九年级下册第30章 二次函数综合与测试课后作业题,共33页。试卷主要包含了若点A,一次函数与二次函数的图象交点等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数同步训练
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,抛物线与x轴交于点和B,与y轴交于点C,不正确的结论是( )

    A. B. C. D.
    2、若函数,则当函数y=15时,自变量的值是( )
    A. B.5 C.或5 D.5或
    3、下列二次函数的图象中,顶点在第二象限的是( )
    A. B.
    C. D.
    4、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过(  )

    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    5、已知二次函数,当时,x的取值范围是,且该二次函数图象经过点,则p的值不可能是( )
    A.-2 B.-1 C.4 D.7
    6、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    7、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图(  )
    A. B.
    C. D.
    8、一次函数与二次函数的图象交点(  )
    A.只有一个 B.恰好有两个
    C.可以有一个,也可以有两个 D.无交点
    9、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    10、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )

    A.1个 B.2个 C.3个 D.4个
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知某函数的图象经过,两点,下面有四个推断:
    ①若此函数的图象为直线,则此函数的图象与直线平行;
    ②若此函数的图象为双曲线,则也在此函数的图象上;
    ③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y轴的负半轴相交;
    ④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线左侧.
    所有合理推断的序号是______.
    2、如图,抛物线过点,且对称轴为直线,有下列结论:;;抛物线经过点与点,则;方程的一个解是;,其中所有正确的结论是__________.

    3、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.

    4、如图,在平面直角坐标系中,Q是直线上的一个动点,将Q绕点P(0,1)顺时针旋转90°,得到点Q',连接OQ',则OQ'的最小值为_________.

    5、已知抛物线经过点.若点在该抛物线上,且,则n的取值范围为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、红星公司销售自主研发的一种电子产品,已知该电子产品的生产成本为每件40元,规定销售单价不低于44元,且销售每件产品的利润率不能超过50%,试销售期间发现,当销售单价定为44元时,每月可售出300万件,销售单价每上涨1元,每月销售量减少10万件,现公司决定提价销售,设销售单价为x元,每月销售量为y元.
    (1)请写出y与x之间的函数关系式和自变量x的取值范围;
    (2)当电子产品的销售单价定为多少元时,公司每月销售电子产品获得的利润w最大?最大利润是多少万元?
    (3)若公司要使销售该电子产品每月获得的利润不低于2400万元,则每月的销售量最多应为多少万件?
    2、如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接BC,点P是位于x轴上方抛物线上的一个动点,过P作PE⊥x轴,垂足为点E.

    (1)求抛物线的函数表达式;
    (2)是否存在点P,使得以A、P、E为顶点的三角形与△BOC相似?若存在,求出点P的坐标,说明理由;
    (3)是否存在点P,使得四边形ABCP的面积最大?若存在,请求出点P的坐标,请说明理由.
    3、如图,在平面直角坐标系中,抛物线y=ax2﹣x﹣4与x轴交于点A(4,0),与y轴交于点C.点B(12,0),联结BC.

    (1)求该抛物线解析式;
    (2)求∠ACB的正弦值;
    (3)如图,点D为抛物线上一点,直线AD交y轴于点E,交线段BC于点F.若△ECA∽△EFC,求点D的坐标.
    4、已知二次函数的图像经过点(1,4)和点(2,3).
    (1)求这个二次函数的表达式;
    (2)求该二次函数图像的顶点坐标.
    (3)当x在什么范围内时,y随x的增大而减小?
    5、如图,直线AB与抛物线y=x2+bx+c交于点A(﹣4,0),B(2,6),与y轴交于点C,且OA=OC,点D为线段AB上的一点,连结OD,OB.

    (1)求抛物线的解析式;
    (2)若OD将△AOB的面积分成1:2的两部分,求点D的坐标;
    (3)在坐标平面内是否存在点P,使以点A,O,B,P为顶点四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴求出与的关系.
    【详解】
    解:A、由抛物线的开口向上知,
    对称轴位于轴的右侧,

    抛物线与轴交于负半轴,


    故选项正确,不符合题意;
    B、对称轴为直线,得,即,故选项正确,不符合题意;
    C、如图,当时,,,故选项正确,不符合题意;
    D、当时,,
    ,即,故选项错误,符合题意;
    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点坐标,二次函数图象与函数系数之间的关系,解题的关键是掌握数形结合思想的应用,注意掌握二次函数图象与系数的关系.
    2、D
    【解析】
    【分析】
    根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.
    【详解】
    解:当x<3时,
    令2x2-3=15,
    解得x=-3;
    当x≥3时,
    令3x=15,
    解得x=5;
    由上可得,x的值是-3或5,
    故选:D.
    【点睛】
    本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.
    3、C
    【解析】
    【分析】
    根据二次函数的顶点式求得顶点坐标,即可判断.
    【详解】
    解:A.二次函数的顶点为(1,3),在第一象限,不合题意;
    B.二次函数的顶点为(1,﹣3),在第四象限,不合题意;
    C.二次函数的顶点为(﹣1,3),在第二象限,符合题意;
    D.二次函数的顶点为(﹣1,﹣3),在第三象限,不合题意;
    故选:C.
    【点睛】
    本题考查二次函数的图象、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
    4、D
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
    【详解】
    解:由势力的线与y轴正半轴相交可知c>0,
    对称轴x=-<0,得b<0.

    所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.
    故选:D.
    【点睛】
    本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.
    5、C
    【解析】
    【分析】
    根据题意求得抛物线的对称轴,进而求得时,的取值范围,根据的纵坐标小于0,即可判断的范围,进而求解
    【详解】
    解:∵二次函数,当时,x的取值范围是,
    ∴,二次函数开口向下
    解得,对称轴为
    当时,,
    经过原点,

    根据函数图象可知,当,,
    根据对称性可得时,
    二次函数图象经过点,

    不可能是4
    故选C
    【点睛】
    本题考查了抛物线与一元一次不等式问题,求得抛物线的对称轴是解题的关键.
    6、B
    【解析】
    【分析】
    由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
    【详解】
    解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
    ∴点A对称的点的坐标为


    故选B.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
    7、B
    【解析】
    【分析】
    分别利用函数解析式分析图象得出答案.
    【详解】
    解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;
    B、两函数图象符合题意;
    C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;
    D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.
    8、B
    【解析】
    【分析】
    联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.
    【详解】
    解:联立一次函数和二次函数的解析式可得:

    整理得:

    有两个不相等的实数根
    与的图象交点有两个
    故选:B.
    【点睛】
    本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.
    9、A
    【解析】
    【分析】
    根据抛物线解析式可确定对称轴为,根据点与对称轴的距离的大小以及函数值的大小关系即可判断的符号,即开口方向
    【详解】
    解:∵的对称轴为,且
    ∴若,
    则离对称轴远,则抛物线的开口朝下,即,故A正确
    若,
    则离对称轴远,则抛物线的开口朝上,即,故C不正确
    对于B,D选项不能判断的符号
    故选A
    【点睛】
    本题考查了二次函数图象的性质,掌握的性质是解题的关键.
    10、B
    【解析】
    【分析】
    根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
    【详解】
    解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
    由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
    由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;
    由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1,m),(x2,m),由图象可知此时m>-2
    因此④正确的,
    综上所述,正确的有2个,
    故选:B.
    【点睛】
    考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
    二、填空题
    1、①②④
    【解析】
    【分析】
    分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.
    【详解】
    解:①过,两点的直线的关系式为y=kx+b,则

    解得,
    所以直线的关系式为y=x-1,
    直线y=x-1与直线y=x平行,
    因此①正确;
    ②过,两点的双曲线的关系式为,则,
    所以双曲线的关系式为
    当时,
    ∴也在此函数的图象上,
    故②正确;
    ③若过,两点的抛物线的关系式为y=ax2+bx+c,
    当它经过原点时,则有
    解得,
    对称轴x=-,
    ∴当对称轴0<x=-<时,抛物线与y轴的交点在正半轴,
    当->时,抛物线与y轴的交点在负半轴,
    因此③说法不正确;
    ④当抛物线开口向上时,有a>0,而a+b=1,即b=-a+1,
    所以对称轴x=-=-=-,
    因此函数图象对称轴在直线x=左侧,
    故④正确,
    综上所述,正确的有①②④,
    故答案为:①②④.
    【点睛】
    本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.
    2、②⑤
    【解析】
    【分析】
    由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,再由抛物线对称轴为直线,得到,即,即可判断①;根据抛物线的对称性可知抛物线过点,则当时,,由,可得,即可判断②;由抛物线对称轴为直线,且开口向上,则抛物线上的点,离对称轴水平距离越大,函数值越大,即可判断③;由cx2+bx+a=0,方程两边同时除以a得,再由方程的两个根分别为,,得到,,则即为,由此即可判断④;当对应的函数值为,
    当对应的函数值为,又时函数取得最小值,则,由此即可判断⑤.
    【详解】
    解:由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,
    ∵抛物线对称轴为直线,
    ∴,即,
    ,故①错误;
    抛物线过点,且对称轴为直线,
    抛物线过点,
    当时,,

    ∴,故②正确;
    抛物线对称轴为直线,且开口向上,
    ∴抛物线上的点,离对称轴水平距离越大,函数值越大,
    ∵点(4,)与直线的距离为3,点(-3,)与直线的距离为4,
    ,故③错误;
    ∵cx2+bx+a=0
    ∴方程两边同时除以a得,
    ∵方程的两个根分别为,,
    ∴,,
    ∴即为,

    解得或,故④错误;
    当对应的函数值为,
    当对应的函数值为,
    又时函数取得最小值,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴,故⑤正确.
    故答案为:②⑤.
    【点睛】
    本题主要考查了二次函数图像与其系数的关系,解一元二次方程,一元二次方程根与系数的关系,二次函数图像的性质等等,熟知相关知识是解题的关键.
    3、(,)
    【解析】
    【分析】
    设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
    【详解】
    解:∵点A是抛物线图像上一点
    故设A(x,x2),
    ∵将点A向下平移2个单位到点B,
    故B(x,x2-2)
    ∵把A绕点B顺时针旋转120°得到点C,如图,

    过点B作BD⊥AB于B,过点C作CD⊥BD于D,
    AB=BC=2,∠ABC=120°,∠ABD=90°,
    ∴∠DBC=30°
    故CD=,BD=,
    故C(x+,x2-3),
    把C(x+,x2-3)代入,
    ∴x2-3=(x+)2,
    解得x=-
    ∴A(-,3)
    故答案为:(,3).
    【点睛】
    此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
    4、
    【解析】
    【分析】
    利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.
    【详解】
    解:作QM⊥y轴于点M,Q′N⊥y轴于N,

    ∵∠PMQ=∠PNQ′=∠QPQ′=90°,
    ∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,
    ∴∠QPM=∠PQ′N,
    在△PQM和△Q′PN中,

    ∴△PQM≌△Q′PN(AAS),
    ∴PN=QM,Q′N=PM,
    设Q(m,m+3),
    ∴PM=|m+2|,QM=|m|,
    ∴ON=|1-m|,
    ∴Q′(m+2,1−m),
    ∴OQ′2=(m+2)2+(1−m)2=m2+5,
    当m=0时,OQ′2有最小值为5,
    ∴OQ′的最小值为,
    故答案为:.
    【点睛】
    本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换−旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.
    5、
    【解析】
    【分析】
    将点代入求出抛物线的解析式,再求出对称轴为直线,开口向上,自变量离对称轴越远,因变量越大即可求解.
    【详解】
    解:将代入中得到:,
    解得,
    ∴抛物线的对称轴为直线,且开口向上,
    根据“自变量离对称轴越远,其对应的因变量越大”可知,
    当时,对应的最大为:,
    当时,对应的最小为:,
    故n的取值范围为:,
    故答案为:.
    【点睛】
    本题考查二次函数的图像及性质,点在抛物线上,将点的坐标代入即可求解.
    三、解答题
    1、 (1)();
    (2)销售单价为57元时,最大利润为2890万元;
    (3)240
    【解析】
    【分析】
    (1)用300减去减少的数量即可得到函数解析式,根据利润率不能超过50%求出自变量的取值范围;
    (2)根据利润率公式得出函数解析式,由函数的性质得到最值;
    (3)当w=2400时,解方程,求出解,得到使销售该电子产品每月获得的利润不低于2400万元,, 根据一次函数的性质求出销售量的最大值.
    (1)
    解: ,
    ∵,
    ∴,
    ∴();
    (2)
    解:,
    当x<57时,w随x的增大而增大,
    而,
    ∴当x=57即销售单价为57元时,w有最大值,最大利润为2890万元;
    (3)
    解:当w=2400时,,
    解得,
    ∴使销售该电子产品每月获得的利润不低于2400万元,,
    ∵,y随着x的增大而减小,
    ∴当x=50时,销售量最多,最多销售量为万件,
    ∴每月的销售量最多应为240万件.
    【点睛】
    此题考查了二次函数的实际应用,二次函数的性质,一次函数的性质,二次函数的最值,熟练掌握二次函数的知识点及一次函数的知识点是解题的关键.
    2、 (1)y=-x2-2x+3
    (2)P1(-2,3)或P2(,)
    (3)点P的坐标为(-,),理由见解析.
    【解析】
    【分析】
    (1)把A(-3,0)、B(1,0)代入y=-x2+bx+c求出b、c的值即可求出该函数表达式;
    (2)设P(m,-m2-2m+3),表示出PE、AE的长,分或两种情况讨论即可找到P的坐标;
    (3)连接AC交PE于点H,把四边形分成两部分,表示出S四边形ABCP=S△PAC+S△ABC即可根据二次函数最值找到P的坐标.
    (1)
    把A(-3,0)、B(1,0)代入y=-x2+bx+c得:

    解得:,
    ∴抛物线的函数解析式为y=-x2-2x+3;
    (2)
    ∵A(-3,0),B(1,0),C(0,3),
    ∴OC=3,OB=1,
    ∴设P(m,-m2-2m+3),
    ∴PE=-m2-2m+3,AE=m+3,
    根据题意得:,
    解得:m1=-2,m2=-3(舍去),
    ∴-m2-2m+3=
    ∴P1(-2,3),
    或,
    解得:m1=,m2=−3(舍去),

    ∴P2(,),
    综上,点P坐标为P1(-2,3)或P2(,).
    (3)
    连接AC交PE于点H,

    由A(-3,0),C(0,3)得直线AC的表达式为:y=x+3,
    设P(m,-m2-2m+3),则H(m,m+3),
    ∴PH=-m2-3m
    ∴S△PAC=⋅(−m2−3m)×3
    ∴S四边形ABCP=S△PAC+S△ABC=
    当m=−时,S最大=,此时点P的坐标为(-,).
    【点睛】
    本题考查待定系数法求解析式,三角形的相似以及面积最值问题,熟练掌握好二次函数相关性质是解题基础,并能分类讨论,数形相结合是解题的关键.
    3、 (1)抛物线的解析式为
    (2)∠ACB的正弦值为
    (3)点D的坐标为
    【解析】
    【分析】
    (1)将A点坐标代入,求出的值,然后回代抛物线的解析式即可;
    (2)根据抛物线解析式求出点的坐标,知是等腰直角三角形,求出的值,如图,延长,作,垂足为,为等腰直角三角形,求出的值,在中,,由勾股定理知,,将线段值代入求解即可;
    (3)由可知,,,在中,,解得的值,得到点坐标,设过两点的直线解析式为,将两点坐标代入求得解析式,然后与抛物线解析式联立求出D点坐标即可;
    (1)
    解:将代入中得
    解得
    ∴抛物线的解析式为: .
    (2)
    解:将代入解得
    ∴点坐标为


    ∴是等腰直角三角形


    ∵B点坐标为

    如图,延长,作,垂足为



    ∴为等腰直角三角形

    在中,,由勾股定理知

    ∴的正弦值为.
    (3)
    解:∵

    ∵,


    ∴在中,
    ∴解得
    ∴点坐标为
    ∴设过两点的直线解析式为
    将两点坐标代入解析式得
    解得
    ∴过两点的直线解析式为
    联立一次函数解析式与抛物线解析式得
    消得
    解得或(舍去)

    ∴D点坐标为.
    【点睛】
    本题考查了二次函数解析式,等腰直角三角形的判定与性质,正弦值,勾股定理,三角形相似,一次函数与二次函数的交点坐标等知识.解题的关键在于对知识的综合灵活运用.
    4、 (1)
    (2)
    (3)当时,y随x的增大而减小
    【解析】
    【分析】
    (1)将点(1,4)和(2,3)代入中,得,进行计算即可得;
    (2)将配方得,即可得;
    (3)根据二次函数的性质得即可得.
    (1)
    解:将点(1,4)和(2,3)代入中,得

    解得
    则该二次函数表达式为.
    (2)
    解:
    配方得:,
    则顶点坐标为(1,4).
    (3)
    解:根据二次函数的性质得,当时,y随x的增大而减小.
    【点睛】
    本题考查了二次函数,解题的关键是掌握二次函数的性质.
    5、 (1)
    (2)(-2,2)或(0,4)
    (3)存在,点P的坐标为(-2,6)或(6,6)或(-6,-6).
    【解析】
    【分析】
    (1)根据待定系数法,将A(−4,0)、B(2,6)代入,计算即可;
    (2)先确定点A点C坐标,再运用待定系数法先求出直线AB的解析式,设点D的坐标为(m,m+4),然后根据OD将△AOB的面积分成1:2的两部分计算即可;
    (3)设点P的坐标为(xp,yp),分3种情况分析解答即可.
    (1)
    解:将A(−4,0)、B(2,6)代入可得:
    ,解得:,
    ∴抛物线的解析式为:;
    (2)
    解:∵ A点坐标为(-4,0),OA=OC
    ∴C点坐标为(0,4)
    设直线AB的解析式为:,则
    ,解得:,
    ∴直线AB的解析式为:,
    设点D的坐标为(m,m+4),
    ∵OD将△AOB的面积分成1:2的两部,即或,
    ∴或,解得:或m=0
    ∴点D的坐标为(-2,2)或(0,4);
    (3)
    解:存在;
    设点P的坐标为(xp,yp),
    ①当四边形AOBP是平行四边形时,p1在第二象限时,
    轴,,
    ∵B(2,6),
    ∴点P的坐标为(-2,6);
    ②当四边形AOPB是平行四边形时,p2在第一象限时,
    点P的横坐标为2+4=6,点P的,纵坐标坐标为6,
    点P的坐标为(6,6);
    ③当四边形APOB是平行四边形时,p3在第三象限时,
    ,,
    ∴,,
    即,,
    解得:,,
    此时点P的坐标为(-6,-6);
    综上,存在满足条件的点P的坐标为(-2,6)或(6,6)或(-6,-6).

    【点睛】
    本题属于二次函数与一次函数综合题,主要考查了运用待定系数法求解析式、三角形面积、平行四边形等知识点,正确求出二次函数、一次函数的解析式并掌握分类讨论思想成为解答本题的关键.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试一课一练: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试一课一练,共31页。试卷主要包含了二次函数的最大值是,若二次函数y=a等内容,欢迎下载使用。

    2021学年第30章 二次函数综合与测试达标测试: 这是一份2021学年第30章 二次函数综合与测试达标测试,共31页。试卷主要包含了若二次函数y=a等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map