![难点解析冀教版九年级数学下册第三十章二次函数综合训练试题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12720851/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第三十章二次函数综合训练试题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12720851/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![难点解析冀教版九年级数学下册第三十章二次函数综合训练试题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12720851/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试习题,共29页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数综合训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
2、若点,都在二次函数的图象上,且,则的取值范围是( )
A. B. C. D.
3、抛物线的对称轴是( )
A.直线 B.直线 C.直线 D.直线
4、在同一坐标系内,函数y=kx2和y=kx﹣2(k≠0)的图象大致如图( )
A. B.
C. D.
5、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是( )
A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
6、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
A. B. C.3 D.或3
7、将抛物线向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线表达式是( )
A. B. C. D.
8、下列函数中,随的增大而减小的是( )
A. B.
C. D.
9、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )
A.
B.当时,随的增大而增大
C.
D.是一元二次方程的一个根
10、下列函数中,随的增大而减小的函数是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为万吨,如果2019年至2021年蔬菜产量的年平均增长率为,那么关于的函数解析式为_________.
2、当k-2≤x≤k时,函数y=x2-4x+4(k为常数)的最小值为4,则k的值是____.
3、对于二次函数与,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______
x
﹣1
c
c
d
4、如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点左侧),直线经过点;当时,直线分别与轴,抛物线交于,两点;当时,直线分别与轴,抛物线交于,两点;……;当(为正整数)时,直线分别与轴,抛物线交于,两点,则线段长为______.(用含的代数式表示)
5、将二次函数的图象向左平移1个单位,再向上平移1个单位,得到的新图象函数的表达式为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若 ,求点P的坐标;
(3)连接AC,求 PAC面积的最大值及此时点P的坐标.
2、已知函数(为常数).
(1)若图象经过点,判断图象经过点吗?请说明理由;
(2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
(3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
3、如图,直线AB与抛物线y=x2+bx+c交于点A(﹣4,0),B(2,6),与y轴交于点C,且OA=OC,点D为线段AB上的一点,连结OD,OB.
(1)求抛物线的解析式;
(2)若OD将△AOB的面积分成1:2的两部分,求点D的坐标;
(3)在坐标平面内是否存在点P,使以点A,O,B,P为顶点四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
4、已知抛物线y=x2+bx-3(b是常数)经过点A(-1,0).
(1)求该抛物线的函数表达式和顶点坐标;
(2)抛物线与x轴另一交点为点B,与y轴交于点C,平行于x轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3).
①求直线BC的解析式;
②若x3<x1<x2,结合函数的图象,求x1+x2+x3的取值范围.
5、如图, 在平面直角坐标系 中, 直线 与 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.
(1)用含 的代数式表示顶点 的坐标:
(2)当顶点 在 内部, 且 时,求抛物线的表达式:
(3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
2、D
【解析】
【分析】
先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.
【详解】
抛物线的对称轴为直线,
∵,,
当点和在直线的右侧,则,
解得,
当点和在直线的两侧,则,
解得,
综上所述,的范围为.
故选:D.
【点睛】
本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.
3、C
【解析】
【分析】
抛物线的对称轴为:,根据公式直接计算即可得.
【详解】
解:,
其中:,,,
,
故选:C.
【点睛】
本题考查的是抛物线的对称轴,掌握抛物线的对称轴的公式是解本题的关键,注意对称轴是直线.
4、B
【解析】
【分析】
分别利用函数解析式分析图象得出答案.
【详解】
解:A、二次函数开口向下,k<0;一次函数图象经过第一、三象限,k>0,故此选项错误;
B、两函数图象符合题意;
C、二次函数开口向上,k>0;一次函数图象经过第二、四象限,k<0,故此选项错误;
D、一次函数解析式为:y=kx-2,图象应该与y轴交在负半轴上,故此选项错误.
故选:B.
【点睛】
此题主要考查了二次函数的图象以及一次函数的图象,正确得出k的符号是解题关键.
5、A
【解析】
【分析】
由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
【详解】
解:∵二次函数y=x2﹣2x+m,
∴抛物线开口向上,对称轴为x=1,
∵x1<x2,
∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
∴y1>y2,
故选:A.
【点睛】
本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
6、C
【解析】
【分析】
把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
【详解】
解:,
向左平移个单位后的函数解析式为,
函数图象经过坐标原点,
,
解得.
故选:C.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
7、C
【解析】
【分析】
根据平移的规律:左加右减,上加下减可得函数解析式.
【详解】
解:因为y=x2-2x+3=(x-1)2+2.
所以将抛物线y=(x-1)2+2先向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的表达式为y=(x-1+2)2+2-1,即y=(x+1)2+1.
故选:C.
【点睛】
本题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.
8、C
【解析】
【分析】
根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
【详解】
解:A.在中,y随x的增大而增大,故选项A不符合题意;
B.在中,y随x的增大与增大,不合题意;
C.在中,当x>0时,y随x的增大而减小,符合题意;
D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
故选:C.
【点睛】
本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
9、D
【解析】
【分析】
根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.
【详解】
解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;
B、当时,随的增大而减小,故本选项结论错误;
C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;
D、抛物线与轴的一个交点坐标是,对称轴是直线,
设另一交点为,
,
,
另一交点坐标是,
是一元二次方程的一个根,
故本选项结论正确.
故选:D.
【点睛】
本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.
10、B
【解析】
【分析】
根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
【详解】
A. ,,随的增大而增大,故A选项不符合题意.
B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
D. ,,随的增大而增大,故D选项不符合题意;
故选B.
【点睛】
本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
二、填空题
1、
【解析】
【分析】
根据题意可得2020年的蔬菜产量为,2021年的蔬菜产量为,2021年的蔬菜产量为y万吨,由此即可得.
【详解】
解:根据题意可得:2020年的蔬菜产量为,
2021年的蔬菜产量为,
∴,
故答案为: .
【点睛】
题目主要考查二次函数的应用,理解题意,熟练掌握增长率问题是解题关键.
2、0或6##6或0
【解析】
【分析】
先求出函数的顶点坐标,再根据题意分情况讨论即可求解.
【详解】
∵y=x2-4x+4=(x-2)2
∴顶点坐标为(2,0)
∴当k≤2时,x=k时,函数y=x2-4x+4的最小值为4
故k2-4k+4=4
解得k=0或k=4(舍去)
当k-2≥2时,x= k-2时,函数y=x2-4x+4的最小值为4
故(k-2)2-4(k-2)+4=4
解得k=6或k=2(舍去)
故答案为6或0.
【点睛】
此题主要考查二次函数的图象与性质,解题的关键是根据题意分情况讨论.
3、 1 3
【解析】
【分析】
根据二次函数的性质可知m=1,将d用含c的式子表示出来即可.
【详解】
解由二次函数的性质可得的对称轴为y轴,故由表可得,
∴m=1;
∵二次函数的对称轴为y轴,
∴d=c+3,
∴3,
故答案为:1,3.
【点睛】
此题考查二次函数的对称性,熟练掌握二次函数的性质是解题的关键.
4、
【解析】
【分析】
根据抛物线解析式结合题意可求出A点坐标,又点A在直线上,即可求出,即得出直线解析式.当时,直线解析式即为,即可求出此时的坐标.联立抛物线解析式和直线解析式,即可求出的坐标,再代入抛物线解析式,可求出其纵坐标.最后利用两点的距离公式就出结果即可.
【详解】
∵与x轴交于A,B两点(点A在点B左侧),
令,则,
解得:,.
∴A点坐标为(-1,0).
∵直线经过点A,
∴,
解得:,
∴该直线解析式为.
当时,直线解析式为,
令,则,
∴的坐标为(0,n).
联立,即,
解得:,.
∴的横坐标为n+1.
将代入中,得:,
∴的坐标为().
∴
故答案为:.
【点睛】
本题为二次函数与一次函数综合题,较难.考查二次函数图象与坐标轴的交点坐标,利用待定系数法求函数解析式,二次函数图象与一次函数图象的交点以及两点的距离公式.正确求出和的坐标是解答本题的关键.
5、
【解析】
【分析】
根据二次函数图象平移规律“左加右减,上加下减”解答即可.
【详解】
解:将二次函数的图像向左平移1个单位,再向上平移1个单位,得到的新图像函数的表达式为,
故答案为:.
【点睛】
本题考查二次函数的平移,熟练掌握二次函数图象平移规律是解答的关键.
三、解答题
1、 (1);
(2)P(,﹣2);
(3)面积的最大值为8,此时点P(﹣2,﹣5).
【解析】
【分析】
(1)由题意及抛物线解析式可得:,而OA=2OC=8OB,得出,,即可确定点A、B、C的坐标,利用交点式代入即可确定解析式;
(2)根据(1)中解析式可得抛物线的对称轴为,当时,点P、C的纵坐标相同,横坐标之和除以2为对称抽,即可求解;
(3)过点P作轴交AC于点H,设直线AC的解析式为:,将点、代入确定直线解析式,结合图象可得,与∆PHC底为同底,高的和为OA长度,代入三角形面积得出,据此即可得出面积的最大值及此时点P的坐标.
(1)
解:抛物线,则,
∴,
∵OA=2OC=8OB,
∴,,
∴点A、B、C的坐标分别为、、,
∴,
将代入可得-2=a0+40-12,
解得:,
∴y=x+4x-12=x2+72x-2,
故抛物线的表达式为:;
(2)
解:,
其中:,,,
∴抛物线的对称轴为,
∵,
∴点P、C的纵坐标相同,
∴根据函数的对称性得点;
(3)
解:过点P作轴交AC于点H,
设直线AC的解析式为:,
将点、代入可得:
0=-4k+b-2=b,
解得:,
直线AC的解析式为:,
∴,
∴,
,
=12×4×(-12x-2-x2-72x+2),
,
∵,
∴当时,,此时面积最大,
当时,
,
∴,
答:的面积最大为8,此时点.
【点睛】
题目主要考查利用待定系数法确定一次函数与二次函数解析式,二次函数图象的基本性质等,理解题意,结合图象作出相应辅助线,综合运用二次函数基本性质是解题关键.
2、 (1)经过,理由见解析
(2)n=﹣m2﹣6m.
(3)4或6
【解析】
【分析】
(1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
(2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
(3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
(1)
解:经过,
把点(﹣2,4)代入y=x2+bx+3b中得:
4﹣2b+3b=4,
解得b=0,
∴此函数表达式为:y=x2,
当x=2时,y=4,
∴图象经过点(2,4);
(2)
解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
∴﹣=m,=n,
∴b=﹣2m,
把b=﹣2m代入=n得n==﹣m2﹣6m.
即n关于m的函数解析式为n=﹣m2﹣6m.
(3)
把x=0代入y=x2+bx+3b得y=3b,
∵抛物线不经过第三象限,
∴3b≥0,即b≥0,
∵y=x2+bx+3b=(x+)2﹣+3b,
∴抛物线顶点(﹣,﹣+3b),
∵﹣≤0,
∴当﹣+3b≥0时,抛物线不经过第三象限,
解得b≤12,
∴0≤b≤12,﹣6≤﹣≤0,
∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
把x=1代入y=x2+bx+3b得y=1+4b,
当36﹣3b﹣(﹣+3b)=16时,
解得b=20(不符合题意,舍去)或b=4.
当1+4b﹣(﹣+3b)=16时,
解得b=6或b=﹣10(不符合题意,舍去).
综上所述,b=4或6.
【点睛】
本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
3、 (1)
(2)(-2,2)或(0,4)
(3)存在,点P的坐标为(-2,6)或(6,6)或(-6,-6).
【解析】
【分析】
(1)根据待定系数法,将A(−4,0)、B(2,6)代入,计算即可;
(2)先确定点A点C坐标,再运用待定系数法先求出直线AB的解析式,设点D的坐标为(m,m+4),然后根据OD将△AOB的面积分成1:2的两部分计算即可;
(3)设点P的坐标为(xp,yp),分3种情况分析解答即可.
(1)
解:将A(−4,0)、B(2,6)代入可得:
,解得:,
∴抛物线的解析式为:;
(2)
解:∵ A点坐标为(-4,0),OA=OC
∴C点坐标为(0,4)
设直线AB的解析式为:,则
,解得:,
∴直线AB的解析式为:,
设点D的坐标为(m,m+4),
∵OD将△AOB的面积分成1:2的两部,即或,
∴或,解得:或m=0
∴点D的坐标为(-2,2)或(0,4);
(3)
解:存在;
设点P的坐标为(xp,yp),
①当四边形AOBP是平行四边形时,p1在第二象限时,
轴,,
∵B(2,6),
∴点P的坐标为(-2,6);
②当四边形AOPB是平行四边形时,p2在第一象限时,
点P的横坐标为2+4=6,点P的,纵坐标坐标为6,
点P的坐标为(6,6);
③当四边形APOB是平行四边形时,p3在第三象限时,
,,
∴,,
即,,
解得:,,
此时点P的坐标为(-6,-6);
综上,存在满足条件的点P的坐标为(-2,6)或(6,6)或(-6,-6).
【点睛】
本题属于二次函数与一次函数综合题,主要考查了运用待定系数法求解析式、三角形面积、平行四边形等知识点,正确求出二次函数、一次函数的解析式并掌握分类讨论思想成为解答本题的关键.
4、 (1)y=x2-2x-3,(1,−4)
(2)①y=x−3;②
【解析】
【分析】
(1)把A(-1,0)代入y=x2+bx-3其凷b得到抛物线解析式,然后把一般式配成顶点式得到抛物线的顶点坐标;
(2)①解方程x2-2x-3=0得B(3,0),再确定C(0,-3),然后利用待定系数法求直线BC的解析式;
②如图,利用对称性得到x2-1=1-x1,则x1+x2=2,所以x1+x2+x3=2+x3,利用函数图象得到-1<x3<0,从而得到1<x1+x2+x3<2.
(1)
解:把A(-1,0)代入y=x2+bx-3得1-b-3=0,解得b=-2,
∴抛物线解析式为y=x2-2x-3,
∵y=(x-1)2-4,
∴抛物线的顶点坐标为(1,-4);
(2)
解:①当y=0时,x2-2x-3=0,解得x1=-1,x2=3,则B(3,0),
当x=0时,y=x2-2x-3=-3,则C(0,-3),
设直线BC的解析式为y=mx+n,
把B(3,0),C(0,-3)代入得,解得,
∴直线BC的解析式为y=x-3;
②如图,
x2-1=1-x1,
∴x1+x2=2,
∴x1+x2+x3=2+x3,
∵y3<-3,即x3-3<-3,
∴x3<0,
∵y=-4时,x-3=-4,解得x=-1,
∴-1<x3<0,
∴1<x1+x2+x3<2.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
5、 (1)
(2);
(3)1<a<3
【解析】
【分析】
(1)利用配方法将抛物线解析式化为顶点式即可解答;
(2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;
(3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解
(1)
解:拋物线 ,
∴顶点C的坐标为;
(2)
解:对于,当x=0时,y=5,当y=0时,x=5,
∴A(5,0),B(0,5),
∵顶点 在 内部, 且 ,
∴,
∴a=2,
∴拋物线的表达式为 ;
(3)
解:由题意,平移后的抛物线的顶点P的坐标为,
∵平移后的抛物线的顶 点 仍在 内,
∴,
解得:1<a<3,
即 的取值范围为1<a<3.
【点睛】
本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.
相关试卷
这是一份2021学年第30章 二次函数综合与测试同步训练题,共21页。试卷主要包含了抛物线的顶点坐标为,已知点,,都在函数的图象上,则,一次函数与二次函数的图象交点,若二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试课后复习题,共26页。试卷主要包含了一次函数与二次函数的图象交点,抛物线,,的图象开口最大的是等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试课时训练,共28页。试卷主要包含了下列函数中,二次函数是,二次函数的最大值是等内容,欢迎下载使用。