|试卷下载
搜索
    上传资料 赚现金
    难点详解冀教版九年级数学下册第三十章二次函数专题测试练习题
    立即下载
    加入资料篮
    难点详解冀教版九年级数学下册第三十章二次函数专题测试练习题01
    难点详解冀教版九年级数学下册第三十章二次函数专题测试练习题02
    难点详解冀教版九年级数学下册第三十章二次函数专题测试练习题03
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    冀教版九年级下册第30章 二次函数综合与测试随堂练习题

    展开
    这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了二次函数y=ax2﹣4ax+c,若点A,二次函数的最大值是等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数专题测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,且经过点(0,2).有下列结论:①abc<0;②b2﹣4ac>0:③9a+3b+c<2;④3a+c<0;⑤若(﹣,y1),(﹣,y2),(4,y3)是抛物线上的点,则y3<y1<y2,其中正确结论的个数是( )

    A.2 B.3 C.4 D.5
    2、如图,给出了二次函数的图象,对于这个函数有下列五个结论:①<0;②ab>0;③;④;⑤当y=2时,x只能等于0.其中结论正确的是( )

    A.①④ B.③⑤ C.②⑤ D.③④
    3、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )

    A.2个 B.3个 C.4个 D.5个
    4、已知二次函数,若时,函数的最大值与最小值的差为4,则a的值为( )
    A.1 B.-1 C. D.无法确定
    5、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    6、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
    A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
    7、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为(  )

    A.②③ B.②④ C.①②③ D.②③④
    8、如图,直线与y轴交于点A,与直线交于点B,若抛物线的顶点在直线上移动,且与线段、都有公共点,则h的取值范围是( )

    A. B. C. D.
    9、二次函数的最大值是( )
    A. B. C.1 D.2
    10、若二次函数与轴的一个交点为,则代数式的值为( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、请写出一个开口向下,与轴交点的纵坐标为3的抛物线的函数表达式__.
    2、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.
    3、二次函数的图像上横坐标与纵坐标相等的点的坐标为__________.
    4、二次函数的图像如图所示,对称轴为直线,根据图中信息可求得该二次函数的解析式为______.

    5、如果抛物线经过点A(3,6)和点B(﹣1,6),那么这条抛物线的对称轴是直线_____.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知函数(为常数).
    (1)若图象经过点,判断图象经过点吗?请说明理由;
    (2)设该函数图象的顶点坐标为,当的值变化时,求与的关系式;
    (3)若该函数图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
    2、如图,隧道的截面由抛物线和长方形构成.长方形的长为,宽为,抛物线的最高点离路面的距离为.

    (1)求抛物线的函数表达式;
    (2)一大型货车装载设备后高为,宽为.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?
    3、某政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,月销售量(件)与销售单价(元)之间的关系可看作一次函数:,已知当销售单价定为25元时,李明每月获得利润为1250元.
    (1)求的值;
    (2)当销售单价定为多少元时,每月可获得最大利润?并求最大利润是多少?
    (注:利润=(销售单价-进价)×销售量)
    4、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:
    x


    0
    1
    2
    3

    y

    0



    0

    (1)求该二次函数的表达式;
    (2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.
    5、图中是抛物线形拱桥,P处有一照明灯,水面OA宽4m.以O为原点,OA所在直线为x轴建立直角坐标系,若点P的坐标为.

    (1)求拱桥所在抛物线的函数表达式;
    (2)因降暴雨水位上升1m,此时水面宽为多少?(结果保留根号)

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    由抛物线开口方向、对称轴以及与y轴的交点即可判断①;根据抛物线与x轴的交点即可判断②;根据函数的对称性和增减性即可判断③;根据抛物线的对称轴为直线x=1,得出b=-2a,由x=-1时,y=a-b+c<0,即可得出3a+c<0,即可判断④;根据二次函数的性质即可判断⑤.
    【详解】
    解:∵对称轴是直线x=1,且经过点(0,2),
    ∴左同右异ab<0,c>0,
    ∴abc<0,所以①正确;
    ∵抛物线与x轴有2个交点,
    ∴b2-4ac>0,所以②正确;
    ∵抛物线对称轴是直线x=1,
    ∴x=-1与x=3的函数值一样,x=0与x=2的函数值都是2,
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∴9a+3b+c<2,所以③正确;
    ∵对称轴为x=1,
    ∴=1,即b=-2a,
    ∵x=-1时,y=a-b+c>0,
    ∴3a+c>0,所以④错误;
    ∵抛物线开口向下,对称轴为x=1,
    ∴当x<1时,y随x的增大而增大,
    ∵点(4,y3)关于直线x=1的对称点为(-2,y3),且,
    ∴y1<y3<y2,所以⑤不正确;
    故选:B.
    【点睛】
    本题考查二次函数的图象和性质,掌握抛物线的开口方向、对称轴、顶点坐标以及抛物线与x轴的交点与系数a、b、c的关系是正确判断的前提.
    2、D
    【解析】
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    ①由抛物线与x轴有两个交点可以推出b2-4ac>0,故①错误;
    ②由抛物线的开口方向向下可推出a<0;
    因为对称轴为x==2>0,又因为a<0,∴b>0,故ab<0;②错误;
    ③由图可知函数经过(-1,0),∴当,,故③正确;
    ④对称轴为x=,∴,故④正确;
    ⑤当y=2时,,故⑤错误;
    ∴正确的是③④
    故选:D
    【点睛】
    二次函数y=ax2+bx+c系数符号的确定:
    (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.
    (2)b由对称轴和a的符号确定:由对称轴公式x=−判断符号.
    (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.
    (4)b2-4ac由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.
    3、C
    【解析】
    【分析】
    根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
    【详解】
    ∵抛物线开口向上,
    ∴a>0,
    ∵抛物线与y轴的交点在y轴的负半轴上,
    ∴c<0,
    ∵抛物线的对称轴在y轴的右边,
    ∴b<0,
    ∴,
    故①正确;
    ∵二次函数的图像与x轴交于点,
    ∴a-b+c=0,
    根据对称轴的左侧,y随x的增大而减小,
    当x=-2时,y>0即,
    故②正确;
    ∵,

    ∴b= -2a,
    ∴3a+c=0,
    ∴2a+c=2a-3a= -a<0,
    故③正确;
    根据题意,得,
    ∴,
    解得,
    故④错误;
    ∵=0,
    ∴,
    ∴y=向上平移1个单位,得y=+1,
    ∴为方程的两个根,且且.
    故⑤正确;
    故选C.
    【点睛】
    本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
    4、C
    【解析】
    【分析】
    分a>0或a<0两种情况讨论,求出y的最大值和最小值,即可求解;
    【详解】
    当a>0时,∵对称轴为x=,
    当x=1时,y有最小值为2,当x=3时,y有最大值为4a+2,
    ∴4a+2-2=4.
    ∴a=1,
    当a<0时,同理可得
    y有最大值为2; y有最小值为4a+2,
    ∴2-(4a+2)=4,
    ∴a=-1,
    综上,a的值为
    故选:C
    【点睛】
    本题考查了二次函数的性质,二次函数图象上点的坐标特征等知识,利用分类思想解决问题是本题的关键.
    5、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    6、B
    【解析】
    【分析】
    由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
    【详解】
    解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
    ∴点A对称的点的坐标为


    故选B.
    【点睛】
    本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
    7、D
    【解析】
    【分析】
    根据二次函数的图象及性质即可判断.
    【详解】
    解:由函数图象可知,抛物线开口向上,
    ∴a>0,
    ∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
    ∴抛物线与x轴另一个交点坐标为(3,0),
    ∴当x>1时,y随x的增大而增大,故①错误;
    ∵﹣=1,
    ∴b=﹣2a,
    ∴2a+b=0,故②正确;
    当x=2时,y=4a+2b+c<0,故③正确;
    当x=﹣1时,y=a﹣b+c=3a+c=0,
    ∴c=﹣3a,
    ∴﹣a>c,
    ∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
    ∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
    即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
    正确的有②③④,
    故选:D.
    【点睛】
    本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
    8、B
    【解析】
    【分析】
    将与联立可求得点B的坐标,然后由抛物线的顶点在直线可求得k=−h,于是可得到抛物线的解析式为y=(x−h)2−h,由图形可知当抛物线经过点B和点C时抛物线与线段AB、BO均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.
    【详解】
    解:∵将与联立得:,
    解得:.
    ∴点B的坐标为(−2,1),
    由抛物线的解析式可知抛物线的顶点坐标为(h,k),
    ∵将x=h,y=k,代入得y=−x得:−h=k,解得k=−h,
    ∴抛物线的解析式为y=(x−h)2−h,
    如图1所示:当抛物线经过点C时,

    将C(0,0)代入y=(x−h)2−h得:h2−h=0,解得:h1=0(舍去),h2=;
    如图2所示:当抛物线经过点B时,

    将B(−2,1)代入y=(x−h)2−h得:(−2−h)2−h=1,整理得:2h2+7h+6=0,解得:h1=−2,h2=−(舍去).
    综上所述,h的范围是−2≤h≤,即−2≤h≤
    故选:B.
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数的交点与一元二次方程组的关系、待定系数法求二次函数的解析式,通过平移抛物线探究出抛物线与线段AB、BO均有交点时抛物线经过的“临界点”为点B和点O是解题解题的关键.
    9、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    10、D
    【解析】
    【分析】
    把代入即可求出,则,进而可求出代数式的值.
    【详解】
    解:二次函数与轴的一个交点为,
    时,,


    故选:D.
    【点睛】
    本题主要考查抛物线与轴的交点,解题的关键是把代入求出的值.
    二、填空题
    1、
    【解析】
    【分析】
    首先根据开口向下得到二次项系数小于0,然后根据与轴的交点坐标的纵坐标为3得到值即可得到函数的解析式.
    【详解】
    解:开口向下,
    中,
    与轴的交点纵坐标为3,

    抛物线的解析式可以为:(答案不唯一).
    故答案为:(答案不唯一).
    【点睛】
    本题考查了二次函数的性质,解题的关键是熟知二次函数中各项系数的作用.
    2、2
    【解析】
    【分析】
    首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可.
    【详解】
    解:∵
    ∴,代入得:
    ∴抛物线的顶点坐标为
    ∵当时,即,
    解得:,
    ∴抛物线与x轴两个交点坐标为和
    ∵的“特征三角形”是等腰直角三角形,
    ∴,即
    解得:.
    故答案为:2.
    【点睛】
    此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标.
    3、、
    【解析】
    【分析】
    设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,求出的值即可.
    【详解】
    解:设函数的图象上,横坐标与纵坐标相等的点的坐标是,则,即,
    解得.
    故符合条件的点的坐标是:、.
    故答案为:、.
    【点睛】
    本题考查的是二次函数图象上点的坐标特点,解题的关键是掌握即二次函数图象上各点的坐标一定适合此函数的解析式.
    4、y=-x2-2x+3
    【解析】
    【分析】
    根据图象与x、y轴的交点坐标和对称轴,利用待定系数法求二次函数的解析式即可.
    【详解】
    解:设该二次函数的解析式为y=ax2+bx+c(a≠0),
    由图象知:当x=1时,y=0,当x=0时,y=3,又对称轴为直线x=-1,
    则,解得:,
    ∴该二次函数的解析式为y=-x2-2x+3,
    故答案为:y=-x2-2x+3.
    【点睛】
    本题考查二次函数的图象与性质、待定系数法求二次函数的解析式,熟练掌握待定系数法求二次函数的解析式是解答的关键.
    5、
    【解析】
    【分析】
    根据点,的坐标,利用二次函数的性质可求出抛物线的对称轴,此题得解.
    【详解】
    解:抛物线经过点和点,
    抛物线的对称轴为直线.
    故答案为:.
    【点睛】
    本题考查了二次函数的性质,解题的关键是根据抛物线的对称性,找出抛物线的对称轴.
    三、解答题
    1、 (1)经过,理由见解析
    (2)n=﹣m2﹣6m.
    (3)4或6
    【解析】
    【分析】
    (1)把点(﹣2,4)代入y=x2+bx+3b中,即可得到函数表达式,然后把点(2,4)代入判断即可;
    (2)利用顶点坐标公式得到﹣=m,=n,然后消去b可得到n与m的关系式.
    (3)由抛物线不经过第三象限可得b的取值范围,分别讨论x=﹣6与x=1时y为最大值求解.
    (1)
    解:经过,
    把点(﹣2,4)代入y=x2+bx+3b中得:
    4﹣2b+3b=4,
    解得b=0,
    ∴此函数表达式为:y=x2,
    当x=2时,y=4,
    ∴图象经过点(2,4);
    (2)
    解:∵抛物线函数y=x2+bx+3b(b为常数)的顶点坐标是 (m,n),
    ∴﹣=m,=n,
    ∴b=﹣2m,
    把b=﹣2m代入=n得n==﹣m2﹣6m.
    即n关于m的函数解析式为n=﹣m2﹣6m.
    (3)
    把x=0代入y=x2+bx+3b得y=3b,
    ∵抛物线不经过第三象限,
    ∴3b≥0,即b≥0,
    ∵y=x2+bx+3b=(x+)2﹣+3b,
    ∴抛物线顶点(﹣,﹣+3b),
    ∵﹣≤0,
    ∴当﹣+3b≥0时,抛物线不经过第三象限,
    解得b≤12,
    ∴0≤b≤12,﹣6≤﹣≤0,
    ∴当﹣6≤x≤1时,函数最小值为y=﹣+3b,
    把x=﹣6代入y=x2+bx+3b得y=36﹣3b,
    把x=1代入y=x2+bx+3b得y=1+4b,
    当36﹣3b﹣(﹣+3b)=16时,
    解得b=20(不符合题意,舍去)或b=4.
    当1+4b﹣(﹣+3b)=16时,
    解得b=6或b=﹣10(不符合题意,舍去).
    综上所述,b=4或6.
    【点睛】
    本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系,通过分类讨论求解.
    2、 (1)
    (2)这辆货车能安全通过,理由见解析
    【解析】
    【分析】
    (1)根据题意得: , ,抛物线的顶点坐标为点 ,从而得到点 ,设抛物线的函数表达式为 ,把点代入,即可求解;
    (2)根据题意得:当 时, ,即可求解.
    (1)
    解:∴ ,
    设抛物线的函数表达式为 ,
    ∴ ,解得: ,
    ∴抛物线的函数表达式为;
    (2)
    解:这辆货车能安全通过,理由如下:
    根据题意得:当 时,

    ∴这辆货车能安全通过.
    【点睛】
    本题主要考查了二次函数的实际应用,明确题意,准确得到函数关系式是解题的关键.
    3、 (1)的值是500;
    (2)当销售单价定为35元时,每月可获得最大利润,最大利润是2250元
    【解析】
    【分析】
    (1)根据利润=(销售单价-进价)×销售量列方程求解即可;
    (2)根据利润=(销售单价-进价)×销售量得到w关于x的二次函数关系式,利用二次函数的性质求解即可.
    (1)
    解:由题意可得,,
    解得:,
    答:的值是500;
    (2)
    解:设利润为w元,
    由题意:,

    ∵-10<0,
    ∴时,取得最大值,此时,
    答:当销售单价定为35元时,每月可获得最大利润,最大利润是2250元.
    【点睛】
    本题考查一元一次方程的应用、二次函数的实际应用,理解题意,根据等量关系正确得到一元一次方程和函数关系式是解答的关键.
    4、 (1)二次函数的表达式为: ;
    (2).
    【解析】
    【分析】
    (1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;
    (2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.
    (1)
    解:观察表格数据,由、可知,二次函数图象的顶点坐标为,
    设二次函数的表达式为,
    把代入得,
    -3=a(0-1)2-4,
    ∴,
    ∴,
    即 ;
    (2)
    解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同,
    设二次函数的表达式为,
    在y轴上且在函数图象上,
    将其代入函数表达式为:,
    解得:,
    ∴关于y轴对称的图象所对应的函数表达式为,
    故答案为:.
    【点睛】
    本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.
    5、 (1)
    (2)
    【解析】
    【分析】
    (1)利用待定系数法求解可得;
    (2)在所求函数解析式中求出时的值即可得.
    (1)
    解:设抛物线的解析式为,
    将点、代入,得:,
    解得:,
    所以抛物线的解析式为;
    (2)
    当时,,即,
    解得:,
    则水面的宽为.
    【点睛】
    本题主要考查二次函数的应用,解题的关键是将实际问题转化为二次函数的问题求解,并熟练掌握待定系数法求函数解析式.

    相关试卷

    初中数学冀教版九年级下册第30章 二次函数综合与测试综合训练题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试综合训练题,共30页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试课时练习: 这是一份冀教版九年级下册第30章 二次函数综合与测试课时练习,共28页。试卷主要包含了同一直角坐标系中,函数和,抛物线的顶点坐标为等内容,欢迎下载使用。

    数学第30章 二次函数综合与测试随堂练习题: 这是一份数学第30章 二次函数综合与测试随堂练习题,共29页。试卷主要包含了抛物线y=42+3的顶点坐标是,下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map