初中数学冀教版九年级下册第30章 二次函数综合与测试同步练习题
展开九年级数学下册第三十章二次函数定向测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )
A. B. C. D.
2、某商场第1年销售计算机5000台,如果每年的销售量比上一年增加相同的百分率,第3年的销售量为台,则关于的函数解析式为( )
A. B.
C. D.
3、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有( )
A.1个 B.2个 C.3个 D.4个
4、一个球从地面竖直向上弹起时的速度为8米/秒,经过秒时球的高度为米,和满足公式:h=v0t-12gt2v0表示球弹起时的速度,表示重力系数,取米/秒,则球不低于3米的持续时间是( )
A.秒 B.秒 C.秒 D.1秒
5、二次函数图像的顶点坐标是( )
A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)
6、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是( )
A.4 B.3 C.2 D.1
7、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
8、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米 B.10米 C.4米 D.12米
9、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有( )
A.4个 B.3个 C.2个 D.1个
10、二次函数的图象如图所示,那么下列说法正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,小明在一次高尔夫球训练中,从山坡下P点打出一球向球洞A点飞去,球的飞行路线为抛物线,如果不考虑空气阻力,当球达到最大高度BD为12米时,球移动的水平距离PD为9米.已知山坡PA的坡度为1:2(即),洞口A离点P的水平距离PC为12米,则小明这一杆球移动到洞口A正上方时离洞口A的距离AE为______米.
2、如图,抛物线与轴交于点,,若对称轴为直线,点的坐标为(-3,0),则不等式的解集为______.
3、已知的三个顶点为, 将向右平移 个单位后, 某一边的中点恰好落在二次函数的图象上, 则的值为____________.
4、已知二次函数的图象经过点,那么a的值为_____.
5、如果(2,y1)(3,y2)是抛物线y=(x+1)2上两点,那么y1_____y2.(填“>”或“<”)
三、解答题(5小题,每小题10分,共计50分)
1、已知二次函数y=ax2﹣4ax+3a.
(1)求该二次函数图象的对称轴以及抛物线与x轴的交点坐标;
(2)若该二次函数的图象开口向下,当1≤x≤4时,y的最大值是2,且当1≤x≤4时,函数图象的最高点为点P,最低点为点Q,求△OPQ的面积;
(3)若对于该抛物线上的两点P(x1,y1),Q(x2,y2),当t≤x1≤t+1,x2≥5时,均满足y1≥y2,请直接写出t的最大值.
2、某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间t(天)之间的函数关系为p=,且t为整数,日销售量y(千克)与时间t(天)之间的函数关系如图所示.
(1)求日销售量y与时间t的函数表达式.
(2)哪一天的日销售利润最大?最大利润是多少?
3、在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象经过点(2,3),且交x轴于A(﹣1,0)、B(m,0),求m的值及二次函数图象的对称轴.
4、如图1,抛物线y=ax2+bx+c(a>0)的顶点为M,平行于x的直线与抛物线交于点A,B,若△AMB为等腰直角三角形,则抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的“准碗形”,线段AB称为碗宽,点M到线段AB的距离称为碗高.
(1)抛物线y=x2对应的碗宽为 ;
(2)抛物线y=ax2(a>0)对应的碗宽为 ;抛物线y=a(x﹣2)2+3(a>0)对应的碗高为 ;
(3)已知抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.
①求碗顶M的坐标;
②如图2,将“准碗形AMB”绕点M顺时针旋转30°得到“准碗形”.过点作x轴的平行线交准碗形于点C,点P是线段上的动点,过点P作y轴的平行线交准碗形A'MB'于点Q.请直接写出线段PQ长度的最大值.
5、在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(0,6)和B(﹣2,﹣2).
(1)求c的值,并用含a的代数式表示b;
(2)当a=时.
①求此函数的解析式,并写出当﹣4≤x≤2时,y的最大值和最小值;
②如图,抛物线y=ax2+bx+c与x轴的左侧交点为C,作直线AC,D为直线AC下方抛物线上一动点,与AC交于点F,作DM⊥AC于点M.是否存在点D使△DMF的周长最大?若存在,请求出D点的坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、B
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
故当时,,即,故B错误,符合题意;
C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
2、B
【解析】
【分析】
根据增长率问题的计算公式解答.
【详解】
解:第2年的销售量为,
第3年的销售量为,
故选:B.
【点睛】
此题考查了增长率问题的计算公式,a是前量,b是后量,x是增长率,熟记公式中各字母的意义是解题的关键.
3、C
【解析】
【分析】
根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.
【详解】
解:∵图象开口向下,
∴a<0,
∵对称轴为直线x=1,
∴−=1,
∴b=−2a>0,
∵图象与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,
∴①说法正确,
由图象可知抛物线与x轴有两个交点,
∴b2−4ac>0,
∴②错误,
由图象可知,当x=−2时,y<0,
∴4a−2b+c=4a−2(−2a)+c=8a+c<0,
∴③正确,
由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,
∵对称轴是x=1,
∴另一个根为x=5,
∴④正确,
∴正确的有①③④,
故选:C.
【点睛】
本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.
4、A
【解析】
【分析】
根据已知得到函数关系式,将h=3代入,求出t值的差即为答案.
【详解】
解:由题意得,
当h=3时,,
解得,
∴球不低于3米的持续时间是1-0.6=0.4(秒),
故选:A.
【点睛】
此题考查了二次函数的实际应用,解一元二次方程,正确理解题中各字母的值,代入求出函数解析式解决问题是解题的关键.
5、C
【解析】
【分析】
直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.
【详解】
解:抛物线的顶点坐标为,
故选:C.
【点睛】
本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.
6、B
【解析】
【分析】
看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.
【详解】
∵抛物线与x轴有两个不同的交点,
∴﹣4ac>0;
故①正确;
∵抛物线开口向下,与y轴交于正半轴,>0,
∴a<0,b>0, c>0,
∴abc<0;
故②正确;
∵,
∴4a+b=0,
故③正确;
x= -2时,y=4a-2b+c,
根据函数的增减性,得4a-2b+c<0;
故④错误.
故选B.
【点睛】
本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.
7、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
8、B
【解析】
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
∴a=﹣,
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
9、B
【解析】
【分析】
①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故a﹣b+c=0,即可求解.
【详解】
解:①∵函数图象开口向下
∴
又函数的对称轴在y轴右侧,
∴
∴
∵抛物线与y轴正半轴相交,
∴c>0,
∴abc<0,故原答案错误,不符合题意;
②∵抛物线和x轴有两个交点,
∴b2﹣4ac>0正确,符合题意;
③∵点B坐标为(﹣1,0),且对称轴为x=1,
∴点A(3,0),
∴当y<0时,x<﹣1或x>3.故正确,符合题意;
④∵函数的对称轴为:x=﹣=1,
∴b=﹣2a,
∵点B坐标为(﹣1,0),
∴a﹣b+c=0,
而b=﹣2a,
∴
即3a+c=0,正确,符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.
10、D
【解析】
【分析】
根据二次函数图象性质解题.
【详解】
解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;
B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;
C.由图象可知,当x=1时,y=,故C不符合题意,
D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,
故选:D.
【点睛】
本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.
二、填空题
1、##
【解析】
【分析】
分析题意可知,抛物线的顶点坐标为(9,12),经过原点(0,0),设顶点式可求抛物线的解析式,在Rt△PAC中,利用PA的坡度为1:2求出AC的长度,把点A的横坐标x=12代入抛物线解析式,求出CE,最后利用AE=CE-AC得出结果.
【详解】
解:以P为原点,PC所在直线为x轴建立如图所示的平面直角坐标系,
可知:顶点B(9,12),抛物线经过原点,
设抛物线的解析式为y=a(x-9)2+12,
将点P(0,0)的坐标代入可得:0=a(0-9)2+12,求得a=−,
故抛物线的解析式为:y=-(x−9)²+12,
∵PC=12,=1:2,
∴点C的坐标为(12,0),AC=6,
即可得点A的坐标为(12,6),
当x=12时,y=−(12−9)²+12==CE,
∵E在A的正上方,
∴AE=CE-AC=-6=,
故答案为:.
【点睛】
本题考查了二次函数的应用及解直角三角形的知识,涉及了待定系数法求函数解析式的知识,注意建立数学模型,培养自己利用数学知识解决实际问题的能力,难度一般.
2、
【解析】
【分析】
函数的对称轴为直线,与轴交点,则另一个交点,进而求解.
【详解】
解:函数的对称轴为直线,与轴交点,则另一个交点,
观察函数图象知,不等式的解集为:,
故答案为:.
【点睛】
本题考查了抛物线与轴的交点,主要考查函数图象上点的坐标特征,解题的关键是要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.
3、
【解析】
【分析】
求得三角形三边中点的坐标,然后根据平移规律可得平移后的中点坐标,再根据平移后的中点在二次函数的图象上,进而算出m的值.
【详解】
解:∵△ABC的三个顶点为A(-1,-1),B(-1,3),C(-3,-3),
∴AB边的中点(-1,1),BC边的中点(-2,0),AC边的中点(-2,-2),
∵将△ABC向右平移m(m>0)个单位后,
∴AB边的中点平移后的坐标为(-1+m,1),BC边的中点平移后的坐标为(-2+m,0),AC边的中点平移后的坐标为(-2+m,-2),
∵二次函数的图象在x轴的下方,点(-1+m,1)在x轴的上方,
∴AB边的中点不可能在二次函数的图象上,
把(-2+m,0)代入,得
-2(-2+m)2=0,
解得m=2;
把(-2+m,-2)代入,得
-2(-2+m)2=-2,
解得m1=1,m2=3;
∴的值为1,2,3,
故答案为1,2,3.
【点睛】
此题主要考查了平移的性质,中点坐标公式,二次函数图象上点的坐标特点,关键是掌握二次函数图象上的点(x,y)的横纵坐标满足二次函数解析式.
4、
【解析】
【分析】
把已知点的坐标代入抛物线解析式可得到的值.
【详解】
解:二次函数的图象经过点,
,
解得:.
故答案为:.
【点睛】
本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.
5、<
【解析】
【分析】
根据二次函数的性质得到抛物线y=(x+1)2的开口向上,对称轴为直线x=﹣1,则在对称轴右侧,y随x的增大而增大.
【详解】
解:∵y=(x+1)2,
∴a=1>0,
∴抛物线开口向上,
∵抛物线y=(x+1)2对称轴为直线x=﹣1,
∵﹣1<2<3,
∴y1<y2.
故答案为<.
【点睛】
本题考查了的性质,求得对称轴是解题的关键.
三、解答题
1、 (1)对称轴x=2;交点坐标为(1,0)和(3,0)
(2)10
(3)4
【解析】
【分析】
(1)解析式化成顶点式即可求得对称轴,令y=0,得到关于x的方程,解方程即可求得抛物线与x轴的交点坐标;
(2)构建方程求出a的值,再求出△OPQ的面积即可解决问题;
(3)当t≤x1≤t+1,x2≥5时,均满足y1≥y2,推出当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,可得t+1≤5且t≥﹣1,由此即可解决问题.
(1)
解:∵y=ax2﹣4ax+3a=a(x﹣2)2﹣a,
∴对称轴x=2;
令y=0,则ax2﹣4ax+3a=0,
解得x=1或3,
∴抛物线与x轴的交点坐标为(1,0)和(3,0);
(2)
解:∵该二次函数的图象开口向下,且对称轴为直线x=2,
∴当x=2时,y取到在1≤x≤4上的最大值为2,即P(2,2),
∴4a﹣8a+3a=2,
∴a=﹣2,
∴y=﹣2x2+8x﹣6,
∵当1≤x≤2时,y随x的增大而增大,
∴当x=1时,y取到在1≤x≤2上的最小值0.
∵当2≤x≤4时,y随x的增大而减小,
∴当x=4时,y取到在2≤x≤4上的最小值﹣6.
∴当1≤x≤4时,y的最小值为﹣6,即Q(4,﹣6).
∴△OPQ的面积为4×(2+6)﹣2×2÷2﹣4×6÷2﹣(4﹣2)×(2+6)÷2=10;
(3)
解:∵当t≤x1≤t+1,x2≥5时,均满足y1≥y2,
∴当抛物线开口向下,点P在点Q左边或重合且在点Q关于对称轴对称点的右边时,满足条件,
∴t+1≤5且t≥﹣1,
∴﹣1≤t≤4,
∴t的最大值为4.
【点睛】
本题考查二次函数的图象和性质,二次函数图象上点的坐标特征,函数的最值问题等知识,解题的关键是读懂题意、灵活运用所学知识解决问题.
2、 (1)y=﹣2t+200(1≤t≤80,t为整数)
(2)第30天的日销售利润最大,最大利润为2450元
【解析】
【分析】
(1)设日销售量y与时间t的函数解析式为y=kt+b(k≠0),将(1,198)、(80,40)代入,得二元一次方程组,解得k和b的值,再代入y=kt+b即可;
(2)设日销售利润为w,根据日利润等于每千克的利润乘以日销售量可得w=(p-6)y,分两种情况讨论:①当1≤t≤40时,②当41≤t≤80时.
(1)
解:设日销售量y与时间t的函数解析式为y=kt+b(k≠0),
将(1,198)、(80,40)代入,得:
k+b=19880k+b=40,
解得:,
∴日销售量y与时间t的函数表达式为y=-2t+200(1≤t≤80,t为整数);
(2)
解:设日销售利润为w元,则w=(p-6)y,
①当1≤t≤40时,
w=(t+16-6)(-2t+200)=-(t-30)2+2450,
∵-<0,
∴当t=30时,w有最大值,最大值为2450元;
②当41≤t≤80时,
w=(-t+46-6)(-2t+200)=(t-90)2-100,
∵1>0,
∴当t≤90时,w随t的增大而减小,
∴当t=41时,w有最大值,最大值=(41-90)2-100=2301,
∵2450>2301,
∴第30天的日销售利润最大,最大利润为2450元.
【点睛】
本题考查了二次函数在销售问题中的应用,同时本题还考查了待定系数法求一次函数的解析式,解题关键是根据等量关系写出函数解析式.
3、m=3,对称轴为直线x=1
【解析】
【分析】
先根据待定系数法求出二次函数的解析式,令y=0求解x即可求得m,进而可求得二次函数图象的对称轴.
【详解】
解:将(2,3)和(-1,0)代入y=﹣x2+bx+c中,
得:,解得:,
∴y=﹣x2+2x+3,
令y=0,则﹣x2+2x+3=0,即x2﹣2x﹣3=0,
解得:x1=-1,x2=3,
∴该二次函数图象与x轴的交点坐标为A(-1,0)和B(3,0),
∴m=3,
该二次函数图象的对称轴为直线x=1.
【点睛】
本题考查待定系数法求二次函数解析式、二次函数图象与坐标轴的交点问题、二次函数图象的对称轴,熟练掌握待定系数法求函数解析式的步骤是解答的关键.
4、 (1)4
(2),
(3)(2,-3),
【解析】
【分析】
(1)根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m),代入抛物线的解析式,求出A、B两点坐标即可解决问题.
(2)利用(1)中方法可求碗宽,根据等腰直角三角形可知碗高是碗宽的一半.
(3)①由碗高为3求出a,再求顶点坐标即可;②作QS⊥BP于S,找到PQ和QS的关系后即可解决问题.
(1)
解:根据碗宽的定义以及等腰直角三角形的性质可以假设B(m,m).
把B(m,m)代入y=x2,得,解得,m=2或0(舍去),
∴A(﹣2,2),B(2,2),
∴AB=4,即碗宽为4;
故答案为:4.
(2)
解:类似(1)设B(n,n),代入y=a x2,得,解得,n=或0(舍去),AB=,即碗宽为;
抛物线y=a(x﹣2)2+3是由抛物线y=ax2平移得到的,所以,它们的碗宽一样为,根据等腰直角三角形的性质,可知可知碗高是碗宽的一半,即;
故答案为:,.
(3)
解:①抛物线y=ax2﹣4ax﹣(a>0)对应的碗高为3.由(2)可知,
解得,,抛物线解析式为,化成顶点式为;
则M的坐标为(2,-3);
②如图,作QS⊥BP于S,由旋转可知∠PBO=30°,因为过点P作y轴的平行线交准碗形A'MB'于点Q,
∴PQ⊥OB,
∴∠QPB=60°,∠PQS=30°,
∴PQ=2PS,,
当QS等于碗高时,QS最大,此时PQ长度的最大,
由(2)可知QS最大为3,则,;
PQ长度的最大值为.
【点睛】
本题考查了二次函数的性质和直角三角形的性质,解题关键是准确理解题意,熟练运用二次函数的性质和直角三角形的性质求解.
5、 (1)c=6;b=2a+4
(2)①最小值为−,最大值为20;②D(−3,−).
【解析】
【分析】
(1)分别把 A(0,6)和B(-2,-2)代入解析式,可得c和b的值.
(2)①当a=时,此函数表达式为y=x2+x+6,图象开口向上,由顶点坐标公式可知顶点坐标,根据二次函数的性质,当在顶点时函数值最小观察图象结合增减性,当x=2时,y有最大值.②令y=0,得C的坐标,设直线AC的解析式为y=kx+m,把A(0,6),C(-6,0)代入可得直线AC解析式,设D(x,x2+x+6)则F(x,x+6),得FD的值,设△FDM的周长为l,则l=DF+DM+MF=,当FD最大时,周长最大,根据二次函数的性质可得最大值.
(1)
把(0,6)代入y=ax2+bx+c,
得c=6.
把(-2,-2)代入y=ax2+bx+6,
得4a-2b+6=-2,
∴b=2a+4.
(2)
①当a=时,
∴,且c=6
∴函数表达式为y=x2+x+6=,图象开口向上.
∴顶点坐标为,
∵-4≤x≤2,
∴当x=−时,y的最小值为−.
观察图象结合增减性,当x=2时,y有最大值,
把x=2代入y=x2+x+6,
y的最大值为20.
②∵y=x2+x+6,
令y=0,则x=-6或x=−,
∵点C在左侧,
∴C(-6,0)
设直线AC的解析式为y=kx+m,
把A(0,6),C(-6,0)代入y=kx+m,得
m=6-6k+m=0
解得k=1,m=6,
∴y=x+6
设D(x,x2+x+6)则F(x,x+6)
∴FD=x+6−(x2+x+6)=−x2−x,
∵OA=OC=6,∠AOC=90°,
∴∠COA=90°,
∵DF∥AO,
∴∠DFM=∠CAO=45°,
DM=FM=FD,
设△FDM的周长为l,
则l=DF+DM+MF=
当FD最大时,周长最大,
又∵,
又∵−<0且-6<x<0,
∴x=-3时,FD有最大值,即此刻△FDM周长最大.
把x=-3代入y=x2+x+6,
得y=−,
∴D(−3,−).
【点睛】
本题考查二次函数的应用,解本题要熟练掌握二次函数的性质,求二次函数的解析式、待定系数法,数形结合是解题关键.
初中数学冀教版九年级下册第30章 二次函数综合与测试同步达标检测题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共33页。
初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试巩固练习,共37页。
冀教版九年级下册第30章 二次函数综合与测试课时练习: 这是一份冀教版九年级下册第30章 二次函数综合与测试课时练习,共28页。试卷主要包含了同一直角坐标系中,函数和,抛物线的顶点坐标为等内容,欢迎下载使用。