冀教版九年级下册第30章 二次函数综合与测试练习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试练习题,共28页。试卷主要包含了二次函数图像的顶点坐标是,二次函数y=a+bx+c等内容,欢迎下载使用。
九年级数学下册第三十章二次函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )A.1个 B.2个 C.3个 D.4个2、二次函数的图象如图所示,那么下列说法正确的是( )A. B.C. D.3、一次函数与二次函数的图象交点( )A.只有一个 B.恰好有两个C.可以有一个,也可以有两个 D.无交点4、如图所示,一座抛物线形的拱桥在正常水位时,水而AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )A.米 B.10米 C.米 D.12米5、二次函数图像的顶点坐标是( )A.(0,-2) B.(-2,0) C.(2,0) D.(0,2)6、已知二次函数y=ax2-2ax-1(a是常数,a≠0),则下列命题中正确的是( )A.若a=1,函数图象经过点(-1,1) B.若a=-2,函数图象与x轴交于两点C.若a<0,函数图象的顶点在x轴下方 D.若a>0且x≥1,则y随x增大而减小7、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )A. B.y≤2 C.y<2 D.y≤38、若函数,则当函数y=15时,自变量的值是( )A. B.5 C.或5 D.5或9、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是( )A.4 B.3 C.2 D.110、将函数的图像向上平移1个单位,向左平移2个单位,则所得函数表达式是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在东京奥运会跳水比赛中,中国小花全红婵的表现,令人印象深刻.在正常情况下,跳水运动员进行10米跳台训练时,必须在距水面5米之前完成规定的翻腾动作,并调整好入水姿势,否则容易出现失误.假设某运动员起跳后第t秒离水面的高度为h米,且.那么为了避免出现失误,这名运动员最多有_____秒时间,完成规定的翻腾动作.2、二次函数的对称轴是________.3、二次函数的图像与x轴公共点的个数是______.4、对于二次函数与,其自变量与函数值的两组对应值如下表所示,根据二次函数图象的相关性质可知______,______x﹣1ccd 5、已知多项式除以的余数分别为,则除以所得余式的最大值为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,隧道的截面由抛物线和长方形构成.长方形的长为,宽为,抛物线的最高点离路面的距离为.(1)求抛物线的函数表达式;(2)一大型货车装载设备后高为,宽为.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?2、如图,抛物线y=ax2+bx+4经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点是拋物线在轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,,DC.(1)求抛物线的函数表达式;(2)当△BCD的面积与△AOC的面积和为时,求m的值;(3)在(2)的条件下,若点M是x轴上一动点,点是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,为顶点的四边形是平行四边形.请直接写出点M的坐标;若不存在,请说明理由.3、如图,已知抛物线与x轴交于点、B,与y轴交于点.(1)求抛物线的表达式;(2)若M是抛物线上点A,C之间(含点A,C)的一个动点,直接写出点M的纵坐标的取值范围.(3)平移直线,设平移后的直线为l,记l与y轴的交点为,若l与上方的抛物线有唯一交点,求m的取值范围.4、在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=a+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=a+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.5、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣2﹣101234…y…m03n305…其中,m= ,n= ;(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;(3)观察函数图像:①写出该函数的一条性质 ;②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2) -参考答案-一、单选题1、B【解析】【分析】根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.【详解】解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b<0,与y轴交点在负半轴,因此c<0,所有abc>0,因此②正确的;由关于x的一元二次方程ax2+bx+c-m=0有两个不相等的实数根,就是当y=m时,对应抛物线上有两个不同的点,即(x1,m),(x2,m),由图象可知此时m>-2因此④正确的,综上所述,正确的有2个,故选:B.【点睛】考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.2、D【解析】【分析】根据二次函数图象性质解题.【详解】解:A.由图可知,二次函数图象的对称轴为:x=1,即,故A不符合题意;B.二次函数图象与y轴交于负半轴,即c<0,故B不符合题意;C.由图象可知,当x=1时,y=,故C不符合题意,D.由图象的对称性可知,抛物线与x轴的另一个交点为(-2,0),当x=-2时,,,故D符合题意,故选:D.【点睛】本题考查二次函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.3、B【解析】【分析】联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.【详解】解:联立一次函数和二次函数的解析式可得:整理得:有两个不相等的实数根与的图象交点有两个故选:B.【点睛】本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.4、B【解析】【分析】以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,由此可得A(-10,-4),B(10,-4),即可求函数解析式,再将y=-1代入解析式,求出C、D点的横坐标即可求CD的长.【详解】以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,∵O点到水面AB的距离为4米,∴A、B点的纵坐标为-4,∵水面AB宽为20米,∴A(-10,-4),B(10,-4),将A代入y=ax2,-4=100a,∴,∴,∵水位上升3米就达到警戒水位CD,∴C点的纵坐标为-1,∴∴x=±5,∴CD=10,故选:B.【点睛】本题考查二次函数的应用,根据题意建立合适的直角坐标系,在该坐标系下求二次函数的解析式是解题的关键.5、C【解析】【分析】直接利用顶点式写出二次函数的顶点坐标即可得到正确的选项.【详解】解:抛物线的顶点坐标为,故选:C.【点睛】本题考查了二次函数的性质,解题的关键是了解二次函数的顶点式,难度不大.6、B【解析】【分析】根据二次函数的图象与性质逐项分析即可.【详解】A、当a=1,x=-1时,,故函数图象经过点(-1,2),不经过点(-1,1),故命题错误;B、a=-2时,函数为,令y=0,即,由于,所以方程有两个不相等的实数根,从而函数图象与x轴有两个不同的交点,故命题正确;C、当a<0时, ,其顶点坐标为,当a=−1时,顶点坐标为(1,0 ),在x轴上,故命题错误;D、由于,抛物线的对称轴为直线x=1,当a>0且x≥1时,y随x增大而增大,故命题错误.故选:B【点睛】本题考查了二次函数的图象与性质、二次函数与一元二次方程的关系,熟练掌握这些知识是解题的关键.7、A【解析】【分析】根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案【详解】解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,∴另一交点为设抛物线解析式为,将点代入得解得抛物线解析式为则顶点坐标为当x>0时,函数值y的取值范围是故选A【点睛】本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.8、D【解析】【分析】根据题意,利用分类讨论的方法可以求得当函数y=15时,自变量x的值.【详解】解:当x<3时,令2x2-3=15,解得x=-3;当x≥3时,令3x=15,解得x=5;由上可得,x的值是-3或5,故选:D.【点睛】本题考查了二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.9、B【解析】【分析】看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.【详解】∵抛物线与x轴有两个不同的交点,∴﹣4ac>0;故①正确;∵抛物线开口向下,与y轴交于正半轴,>0,∴a<0,b>0, c>0,∴abc<0;故②正确;∵,∴4a+b=0,故③正确;x= -2时,y=4a-2b+c,根据函数的增减性,得4a-2b+c<0;故④错误.故选B.【点睛】本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.10、B【解析】【分析】由二次函数图象平移的规律即可求得平移后的解析式,再选择即可.【详解】解:将抛物线先向上平移1个单位,则函数解析式变为 再将向左平移2个单位,则函数解析式变为,故选:B.【点睛】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.二、填空题1、##1.5【解析】【分析】根据题意,令,解一元二次方程求解即可.【详解】依题意整理得即解得(不符合题意,舍)故答案为:【点睛】本题考查了一元二次方程的应用,读懂题意将代入关系式是解题的关键.2、直线【解析】【分析】抛物线的对称轴为直线 根据抛物线的顶点式可直接得到答案.【详解】解:二次函数的对称轴是直线(或轴)故答案为:直线【点睛】本题考查的是二次函数的对称轴方程,掌握“抛物线的顶点式”是解本题的关键.3、0【解析】【分析】令,得到一元二次方程,根据一元二次方程根的判别式求解即可.【详解】令,则二次函数的图像与x轴无公共点.故答案为:0【点睛】本题考查了二次函数与轴的交点问题,转化为一元二次方程根的判别式求解是解题的关键.4、 1 3【解析】【分析】根据二次函数的性质可知m=1,将d用含c的式子表示出来即可.【详解】解由二次函数的性质可得的对称轴为y轴,故由表可得,∴m=1;∵二次函数的对称轴为y轴,∴d=c+3,∴3,故答案为:1,3.【点睛】此题考查二次函数的对称性,熟练掌握二次函数的性质是解题的关键.5、5【解析】【分析】先根据已知得出,再设,从而可得一个关于的方程组,解方程组可得的值,然后利用二次函数的性质即可得出答案.【详解】解:多项式除以的余数为1,,当时,,同理可得:,设除以所得商式为,余式为(因为除式是三次的,所以余式至多是二次的),则,因此有,解得,所以余式为,由二次函数的性质得:当时,余式取得最大值,最大值为5,故答案为:5.【点睛】本题考查了多项式的除法、二次函数的性质等知识点,正确设出余式的一般形式是解题关键.三、解答题1、 (1)(2)这辆货车能安全通过,理由见解析【解析】【分析】(1)根据题意得: , ,抛物线的顶点坐标为点 ,从而得到点 ,设抛物线的函数表达式为 ,把点代入,即可求解;(2)根据题意得:当 时, ,即可求解.(1)解:∴ ,设抛物线的函数表达式为 ,∴ ,解得: ,∴抛物线的函数表达式为;(2)解:这辆货车能安全通过,理由如下:根据题意得:当 时, ,∴这辆货车能安全通过.【点睛】本题主要考查了二次函数的实际应用,明确题意,准确得到函数关系式是解题的关键.2、 (1)(2)m=(3)存在,M点的坐标为或或或.【解析】【分析】(1)把,代入中进行求解即可;(2)如图,连接,求解对称轴为, 由题意可知,,,结合,与,利用即可得到答案;(3)由(2)得:D点为,再分两种情况讨论,①当BD是平行四边形的一条边时, 如图,当在轴的上方时,由平行四边形的性质与抛物线的性质可得关于抛物线的对称轴对称,重合, 设点, 如图,当在轴的下方时,由平行四边形对角线中点坐标相同得到,, 解方程求解,可得,;②如图,当BD是平行四边形的对角线时, 则,同理可得关于抛物线的对称轴对称,从而可得 从而可得答案.(1)(1)把,代入:,解得:∴抛物线表达式为:;(2)如图,连接,∵抛物线解析式为:,且抛物线与y轴交于点C∴抛物线的对称轴为, ∴OC=4,∵点D的横坐标为m,∴,∵,,∴AO=1,BO=2,∴又∵∴, 解得:,,当时,点在对称轴上,不合题意,舍去,所以取,综上,;(3)当时,D点为, ①当BD是平行四边形的一条边时, 如图,当在轴的上方时,由平行四边形可得,关于抛物线的对称轴对称, 重合, 如图,当在轴的下方时,设点, ,∴,(平行四边形对角线中点坐标相同),∴,解得或∴或,∴或; ②如图,当BD是平行四边形的对角线时, 则, ∴,关于抛物线的对称轴对称,, 综上,点的坐标为: 或或或.【点睛】主要考查了二次函数的综合,二次函数的性质,平行四边形的性质,掌握以上知识是解题的关键.3、 (1);(2);(3)-1<m<3或.【解析】【分析】(1)利用待定系数法求解;(2)将函数解析式化为顶点式,得到抛物线的顶点坐标,即可得到的取值范围;(3)利用待定系数法求出直线AC的解析式,得到直线l的解析式为y=-x+m,求出点B的坐标,由此得到当直线l与BC段相交时,m的取值范围;解,求出当时m的值,由此得到m的取值范围.(1)解:将点、代入中,得,解得,∴抛物线的表达式为;(2)解:∵,M是抛物线上点A,C之间(含点A,C)的一个动点,,∴抛物线的顶点坐标为(1,4),∴点M的纵坐标的取值范围为;(3)解:设直线AC的解析式为y=kx+b,∴,解得,∴直线AC的解析式为y=-x+3,∵设平移后的直线为l,记l与y轴的交点为,∴直线l的解析式为y=-x+m,∵抛物线的对称轴为直线x=1,点A(3,0),∴B(-1,0),将点B坐标代入y=-x+m,得m=-1,当直线l与BC段相交时,m的取值范围是-1<m<3;当直线l与AC段相交时,则,整理得,当时,得;综上,若l与上方的抛物线有唯一交点,m的取值范围为-1<m<3或.【点睛】此题考查了待定系数法求函数解析式,将一般式解析式化为顶点式,直线的平移,一元二次方程的判别式,图象交点问题,综合掌握一次函数与二次函数的知识是解题的关键.4、 (1)在,见解析(2)a=﹣1,b=2(3)当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为【解析】【分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣+px+q,其顶点坐标为(,),根据题意得出=,由抛物线y=﹣+px+q与y轴交点的纵坐标为q,即可得出q=-=,从而得出q的最大值.(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=a+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣+2x+1,设平移后的抛物线为y=﹣+px+q,∴顶点坐标为(,),∵其顶点仍在直线y=x+1上,∴=,∴q=-=, ∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.【点睛】本题考查了图像与点的关系,待定系数法确定函数解析式,配方法求二次函数最值,熟练掌握待定系数法,灵活配方求最值是解题的关键.5、 (1)5,4(2)见解析(3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3【解析】【分析】(1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;(2)描点、连线画出图象即可;(3)①根据图象即可求得;②根据图象即可求得.【小题1】解:把x=-2代入y=|x2-2x-3|,得y=5,∴m=5,把x=1代入y=|x2-2x-3|,得y=4,∴n=4,故答案为:5,4;【小题2】如图所示;【小题3】①函数的性质:图象具有对称性,对称轴是直线x=1;故答案为:图象具有对称性,对称轴是直线x=1;②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.【点睛】本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共32页。试卷主要包含了抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
这是一份初中冀教版第30章 二次函数综合与测试复习练习题,共40页。试卷主要包含了抛物线y=﹣2,下列函数中,二次函数是等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步测试题,共34页。试卷主要包含了抛物线的对称轴是,二次函数y=ax2+bx+c,抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。