初中数学冀教版九年级下册第30章 二次函数综合与测试课时作业
展开九年级数学下册第三十章二次函数章节练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
2、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )
A. B.y≤2 C.y<2 D.y≤3
3、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x
…
-3
-2
-1
0
1
…
y
…
-6
0
4
6
6
…
给出下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴在y轴的右侧;
③抛物线的开口向下;
④抛物线与x轴有且只有1个公共点.
以上说法正确是( )
A.① B.①② C.①②③ D.①②③④
4、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是( )
A.4 B.2 C.6 D.3
5、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为( )
A.②③ B.②④ C.①②③ D.②③④
6、函数向左平移个单位后其图象恰好经过坐标原点,则的值为( )
A. B. C.3 D.或3
7、已知,是抛物线上的点,且,下列命题正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
8、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为( )
A.4米 B.10米 C.4米 D.12米
9、如图,要在二次函数的图象上找一点,针对b的不同取值,所找点M的个数,有下列三种说法:①如果,那么点M的个数为0;②如果.那么点M的个数为1;③如果,那么点M的个数为2.上述说法中正确的序号是( )
A.① B.② C.③ D.②③
10、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=﹣bx+c的图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为__________________.
2、最大值与最小值之和为_________.
3、二次函数的图像不经过第______象限.
4、已知二次函数的图象如图所示,有下列五个结论:①;②;③;④;⑤(为实数且).其中正确的结论有______(只填序号).
5、定义:直线y=ax+b(a≠0)称作抛物线y=ax2+bx(a≠0)的关联直线. 根据定义回答以下问题:
(1)已知抛物线y=ax2+bx(a≠0)的关联直线为y=x+2, 则该抛物线的顶点坐标为_________;
(2)当a=1时, 请写出抛物线y=ax2+bx与其关联直线所共有的特征(写出一条即可):___________________________________.
三、解答题(5小题,每小题10分,共计50分)
1、已知二次函数(a、b、c是常数,)中,函数y与自变量x的部分对应值如下表:
x
…
0
1
2
3
…
y
…
0
0
…
(1)求该二次函数的表达式;
(2)该二次函数图像关于y轴对称的图像所对应的函数表达式是______.
2、已知二次函数.
(1)把它配方成的形式,并写出它的开口方向、顶点的坐标;
(2)作出函数的图象(列表描出五个关键点).
…
0
1
2
3
4
…
…
…
3、阅读理解,并完成相应的问题.
如图,重庆轨道2号线是中国西部地区第一条城市轨道交通线路,也是中国第一条跨座式单轨线路,因其列车在李子坝站穿楼而过闻名全国.小军了解到列车从牛角沱站开往李子坝站时,在距离停车线256米处开始减速.他想知道列车从减速开始,经过多少秒停下来,以及最后一秒滑行的距离.为了解决这个问题,小军通过建立函数模型来描述列车离停车线的距离s(米)与滑行时间t(秒)的函数关系,再应用该函数解决相应的问题.
(1)建立模型
①收集数据:
r(秒)
0
4
8
12
16
20
24
……
s(米)
256
196
144
100
64
36
16
……
②建立平面直角坐标系为了观察s(米)与t(秒)的关系,建立如图所示的平面直角坐标系.
③描点连线:请在平面直角坐标系中将表中未描出的点补充完整,并用平滑的曲线依次连接.
④选择函数模型:观察这条曲线的形状,它可能是_______函数的图象.
⑤求函数解析式;
解:设,因为时,,所以,则.
请根据表格中的数据,求a,b的值.(请写出详细解答过程).
验证:把a,b的值代入中,并将其余几对值代入求出的解析式,发现它们_______满足该函数解析式.(填“都”或“不都”)
结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为__________.
(2)应用模型
列车从减速开始经过_______秒,列车停止;最后一秒钟,列车滑行的距离为_______米.
4、已知二次函数的图象经过点.
(1)求二次函数的表达式;
(2)求二次函数的图象与轴的交点坐标.
5、在平面直角坐标系xOy中,已知抛物线:y=ax2-2ax+4(a>0).
(1)抛物线的对称轴为x= ;抛物线与y轴的交点坐标为 ;
(2)若抛物线的顶点恰好在x轴上,写出抛物线的顶点坐标,并求它的解析式;
(3)若A(m-1,y1),B(m,y2),C(m+2,y3)为抛物线上三点,且总有y1>y3>y2,结合图象,求m的取值范围.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
【详解】
解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
∵-2<0<2<3<5,
∴y3<y2<y4<y1,
若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
若y2y4<0,则y1y3<0,选项C符合题意,
若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
故选:C.
【点睛】
本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
2、A
【解析】
【分析】
根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案
【详解】
解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,
∴另一交点为
设抛物线解析式为,将点代入得
解得
抛物线解析式为
则顶点坐标为
当x>0时,函数值y的取值范围是
故选A
【点睛】
本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.
3、C
【解析】
【分析】
根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
【详解】
解:根据图表,抛物线与y轴交于(0,6),故①正确;
∵抛物线经过点(0,6)和(1,6),
∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
当x<时,y随x的增大而增大,
∴抛物线开口向下,故③正确,
∵抛物线经过点(-2,0),
设抛物线经过点(x,0),
∴x==,
解得:x=3,
∴抛物线经过(3,0),即抛物线与x轴有2个交点(-2,0)和(3,0),
故④错误;
综上,正确的有①②③,
故选:C.
【点睛】
本题考查了二次函数及其图象性质,解决问题的关键是注意表格数据的特点,结合二次函数性质作判断.
4、C
【解析】
【分析】
将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.
【详解】
解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2
∴函数图象一定经过点C(2,-2)
点C关于x轴对称的点的坐标为(2,2),连接,如图,
∵
∴
故选:C
【点睛】
本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.
5、D
【解析】
【分析】
根据二次函数的图象及性质即可判断.
【详解】
解:由函数图象可知,抛物线开口向上,
∴a>0,
∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
∴抛物线与x轴另一个交点坐标为(3,0),
∴当x>1时,y随x的增大而增大,故①错误;
∵﹣=1,
∴b=﹣2a,
∴2a+b=0,故②正确;
当x=2时,y=4a+2b+c<0,故③正确;
当x=﹣1时,y=a﹣b+c=3a+c=0,
∴c=﹣3a,
∴﹣a>c,
∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
正确的有②③④,
故选:D.
【点睛】
本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
6、C
【解析】
【分析】
把函数解析式整理成顶点式形式,再根据向左平移横坐标减表示出平移后的抛物线解析式,再把原点的坐标代入计算即可得解.
【详解】
解:,
向左平移个单位后的函数解析式为,
函数图象经过坐标原点,
,
解得.
故选:C.
【点睛】
本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化求解更加简便,要求熟练掌握平移的规律:左加右减,上加下减.
7、C
【解析】
【分析】
先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
【详解】
解:抛物线的对称轴为:直线,
∵,
当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
8、B
【解析】
【分析】
以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
【详解】
解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
设抛物线的解析式为y=ax2,
∵O点到水面AB的距离为4米,
∴A、B点的纵坐标为﹣4,
∵水面AB宽为20米,
∴A(﹣10,﹣4),B(10,﹣4),
将A代入y=ax2,
﹣4=100a,
∴a=﹣,
∴y=﹣x2,
∵水位上升3米就达到警戒水位CD,
∴C点的纵坐标为﹣1,
∴﹣1=﹣x2,
∴x=±5,
∴CD=10,
故选:B.
【点睛】
本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
9、B
【解析】
【分析】
把点M的坐标代入抛物线解析式,即可得到关于a的一元二次方程,根据根的判别式即可判断.
【详解】
解:∵点M(a,b)在抛物线y=x(2-x)上,
当b=-3时,-3=a(2-a),整理得a2-2a-3=0,
∵△=4-4×(-3)>0,
∴有两个不相等的值,
∴点M的个数为2,故①错误;
当b=1时,1=a(2-a),整理得a2-2a+1=0,
∵△=4-4×1=0,
∴a有两个相同的值,
∴点M的个数为1,故②正确;
当b=3时,3=a(2-a),整理得a2-2a+3=0,
∵△=4-4×3<0,
∴点M的个数为0,故③错误;
故选:B.
【点睛】
本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.
10、D
【解析】
【分析】
根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答.
【详解】
解:由势力的线与y轴正半轴相交可知c>0,
对称轴x=-<0,得b<0.
∴
所以一次函数y=﹣bx+c的图象经过第一、二、三象限,不经过第四象限.
故选:D.
【点睛】
本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题.
二、填空题
1、或
【解析】
【分析】
设二次函数的解析式为y=ax2+bx+c(a≠0),由图象与x轴的另一交点到原点的距离为1可得到抛物线与x轴的另一交点坐标为(1,0)或(-1,0),然后分别把(0,0)、(1,0)、(-,-)或(0,0)、(-1,0)、(-,-)代入解析式中得到两个方程组,解方程组即可确定解析式.
【详解】
解:设二次函数的解析式为y=ax2+bx+c(a≠0),
当图象与x轴的另一交点坐标为(1,0)时,
把(0,0)、(1,0)、(-,-)代入得
,解得,
则二次函数的解析式为;
当图象与x轴的另一交点坐标为(-1,0)时,
把(0,0)、(-1,0)、(-,-)代入得
,解得,
则二次函数的解析式为y=x2+x.
所以该二次函数解析式为y=-x2+x或y=x2+x.
故答案为:y=-x2+x或y=x2+x.
【点睛】
本题考查了待定系数法求二次函数的解析式:先设二次函数的解析式为y=ax2+bx+c(a≠0),然后把二次函数图象上三个点的坐标代入得到关于a、b、c的三元一次方程组,解方程组求出a、b、c的值,从而确定二次函数的解析式.也考查了分类讨论思想的运用.
2、##
【解析】
【分析】
将已知式子化成,分和两种情况,再利用一元二次方程根的判别式可得一个关于的不等式,然后利用二次函数的性质求出的取值范围,从而可得的最大值与最小值,由此即可得出答案.
【详解】
解:由得:,
①当时,;
②当时,则关于的方程根的判别式大于或等于0,
即,
整理得:,
解方程得:,
则对于二次函数,当时,的取值范围为,且,
综上,的取值范围为,
所以的最大值为3,最小值为,
所以的最大值与最小值之和为,
故答案为:.
【点睛】
本题考查了一元二次方程根的判别式、二次函数的性质等知识,将求最值问题转化为一元二次方程问题是解题关键.
3、二
【解析】
【分析】
根据题目中的函数解析式和二次函数的性质可以得到该函数图象不经过哪个象限.
【详解】
解:∵y=-x2+4x-1=-(x-2)2+3,
∴该函数图象的顶点坐标为(2,3)且经过点(0,-1),函数图象开口向下,
∴该函数图象不经过第二象限,
故答案为:二.
【点睛】
本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.
4、③④⑤
【解析】
【分析】
先利用二次函数的开口方向,与轴交于正半轴,二次函数的对称轴为:判断的符号,可判断①,由图象可得:在第三象限,可判断②,由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,可得点在第一象限,可判断③,由在第四象限,抛物线的对称轴为: 即 可判断④,当时,,当, 此时: 可判断⑤,从而可得答案.
【详解】
解:由二次函数的图象开口向下可得:
二次函数的图象与轴交于正半轴,可得
二次函数的对称轴为: 可得
所以: 故①不符合题意;
由图象可得:在第三象限,
故②不符合题意;
由抛物线与轴的一个交点在之间,则与轴的另一个交点在之间,
点在第一象限,
故③符合题意;
在第四象限,
抛物线的对称轴为:
故④符合题意;
当时,,
当,
此时:
故⑤符合题意;
综上:符合题意的有:③④⑤,
故答案为:③④⑤.
【点睛】
本题考查的是二次函数的图象与性质,熟练的应用二次函数的图象与性质判断代数式的符号是解题的关键.
5、 (-1,-1) (1,1+b).
【解析】
【分析】
(1)由关联直线的定义可求得a和b的值,可求得抛物线解析式,化为顶点式可求得其顶点坐标;
(2)由关联直线的定义可求得关联直线解析式,可写出其共有特征.
【详解】
解:(1)∵抛物线y=ax2+bx(a≠0)的关联直线为y=x+2,
∴a=1,b=2,
∴抛物线解析式为y=x2+2x=(x+1)2-1,
∴抛物线顶点坐标为(-1,-1),
故答案为:(-1,-1);
(2)当a=1时,抛物线解析式为y=x2+bx,则关联直线解析式为y=x+b,
∴当x=1时,函数值都为1+b,
∴抛物线及其关联直线都过点(1,1+b),
故答案为:过点(1,1+b).
【点睛】
本题主要考查二次函数的性质,理解好题目中所给关联直线的解析式与抛物线解析式之间的关系是解题的关键.
三、解答题
1、 (1)二次函数的表达式为: ;
(2).
【解析】
【分析】
(1)观察表格数据,由、可知,二次函数图象的顶点坐标为,设二次函数的表达式为,再选一组值代入即可求出a值,解析式即可确定;
(2)先根据顶点坐标求出关于y轴对称的顶点坐标,然后设抛物线解析式为,结合表中数据可得函数图象经过,代入求解即可确定抛物线解析式.
(1)
解:观察表格数据,由、可知,二次函数图象的顶点坐标为,
设二次函数的表达式为,
把代入得,
-3=a(0-1)2-4,
∴,
∴,
即 ;
(2)
解:抛物线的顶点是,关于y轴的对称点,开口方向与原抛物线相同,
设二次函数的表达式为,
在y轴上且在函数图象上,
将其代入函数表达式为:,
解得:,
∴关于y轴对称的图象所对应的函数表达式为,
故答案为:.
【点睛】
本题考查了用待定系数法求二次函数的解析式及抛物线的轴对称变换问题,求出关键点的对称点坐标是解题关键.
2、 (1),开口向下,顶点的坐标为
(2)见解析
【解析】
【分析】
(1)按题目要求配方成顶点式,根据顶点式写出开口方向和顶点坐标;
(2)根据解析式列表、描点、连线画二次函数图象
(1)
解:∵,
∴开口向下,顶点的坐标为
(2)
列表:
…
0
1
2
3
4
…
…
…
描点、连线如图,
【点睛】
本题考查了将二次函数化为顶点式,画二次函数图象,掌握顶点式的图象的性质是解题的关键.
3、 (1)二次, 都, s=
(2)32,0.25
【解析】
【分析】
(1)通过描点、连线,观察图形可知,图象可能是二次函数的函数的图象;将点(4,196),(8,144)代入s=at2+bt+256,得a、b的值,再将其余几对值代入求出的解析式,发现它们都满足该函数解析式,最后得到结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式;
(2)让s=0,可求出列车从减速开始到列车停止的时间,然后将t=31代入s=t2-16t+256,即可求最后一秒钟,列车滑行的距离.
(1)
解:描点连线如下图:
由这条曲线的形状可知,它可能是二次函数的函数的图象;
设s=at2+bt+c(a≠0),因为t=0时,s=256,所以c=256,则s=at2+bt+256,将点(4,196),(8,144)代入s=at2+bt+256,得:
,
解这个方程组得:,
∴s=t2-16t+256,
当t=12时,×122-16×12+256=100,
当t=16时,×162-16×16+256=64,
当t=20时,×202-16×20+256=36,
当t=24时,×242-16×24+256=16,
∴其余几对值代入求出的解析式,发现它们都满足该函数解析式,
∴结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为s=t2-16t+256(t≥0);
(2)
∵列车停止,
∴s=0,
∴t2-16t+256=0,
解这个方程得:t=32,
∴列车从减速开始经过32秒,列车停止;
∴最后一秒钟时31秒,
当t=31时,×312-16×31+256=0.25,
∴最后一秒钟,列车滑行的距离为0.25米.
【点睛】
本题考查了二次函数的性质,二元一次方程组的解法、一元二次方程的解法,做题的关键是确定二次函数的解析式.
4、 (1)y=x 2+ x﹣;
(2)(0,﹣).
【解析】
【分析】
(1)利用待定系数法,把代入函数解析式即可求;
(2)令x=0,求得y的值即可得出结论.
(1)
解:∵二次函数y=a(x+1)2﹣2的图象经过点(﹣5,6),
∴a(﹣5+1)2﹣2=6.
解得:a=.
∴二次函数的表达式为:y=(x+1)2﹣2,即y=x 2+ x﹣;
(2)
解:令x=0,则y=×(0+1)2﹣2=﹣,
∴二次函数的图象与y轴的交点坐标为(0,﹣).
【点睛】
本题主要考查了待定系数法确定抛物线的解析式,二次函数图象上点的坐标的特征,利用待定系数法确定函数的解析式是解题的关键.
5、 (1)1,(0,4)
(2)顶点坐标为(1,0),y=4x2-8x+4
(3)
【解析】
【分析】
(1)根据二次函数对称轴公式,以及与y轴的交点坐标公式;
(2)根据二次函数与x轴交点公式,以及待定系数法求解析式;
(3)先求对称点坐标根据函数的增减性解决本题.
(1)
解:,
当x=0时,y=ax2-2ax+4=4,
所以抛物线的对称轴是直线x=1,抛物线与y轴的交点坐标是(0,4),
故答案为:1,(0,4).
(2)
解:∵抛物线的顶点恰好在x轴上,
∴抛物线的顶点坐标为(1,0),
把(1,0)代入y=ax2-2ax+4得:0=a×12-2a×1+4,
解得:a=4,
∴抛物线的解析式为y=4x2-8x+4.
(3)
解:A(m-1,y1)关于对称轴x=1的对称点为A′(3-m,y1),
B(m,y2)关于对称轴x=1的对称点为B′(2-m,y2),
若要y1>y3>y2,则3-m>m+2>2-m,解得:.
【点睛】
本题考查二次函数图像求对称轴公式,以及与x轴,y轴的交点公式,以及函数的增减性,掌握数形结合的思想是解决本题的关键.
冀教版九年级下册第30章 二次函数综合与测试随堂练习题: 这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了二次函数y=ax2﹣4ax+c,若点A,二次函数的最大值是等内容,欢迎下载使用。
初中数学冀教版九年级下册第30章 二次函数综合与测试习题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试习题,共29页。试卷主要包含了抛物线的顶点坐标为,抛物线的对称轴是等内容,欢迎下载使用。
初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共28页。试卷主要包含了若点A,抛物线的对称轴是等内容,欢迎下载使用。