终身会员
搜索
    上传资料 赚现金
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试题(含答案及详细解析)
    立即下载
    加入资料篮
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试题(含答案及详细解析)01
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试题(含答案及详细解析)02
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专题练习试题(含答案及详细解析)03
    还剩27页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学冀教版九年级下册第30章 二次函数综合与测试同步达标检测题

    展开
    这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步达标检测题,共30页。试卷主要包含了二次函数的最大值是,二次函数y=ax2+bx+c等内容,欢迎下载使用。

    九年级数学下册第三十章二次函数专题练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为(  )
    A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
    2、已知关于的二次函数,当时,随的增大而减小,则实数的取值范围是( )
    A. B. C. D.
    3、已知二次函数y=ax2+bx+c的图象如图所示,则(  )

    A.b>0,c>0,Δ=0 B.b<0,c>0,Δ=0
    C.b<0,c<0,Δ=0 D.b>0,c>0,Δ>0
    4、二次函数的最大值是( )
    A. B. C.1 D.2
    5、如图,已知二次函数的图像与x轴交于点,对称轴为直线.结合图象分析下列结论:①;②;③;④一元二次方程的两根分别为;⑤若为方程的两个根,则且.其中正确的结论个数是( )

    A.2个 B.3个 C.4个 D.5个
    6、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    7、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有(  )

    A.1个 B.2个 C.3个 D.4个
    8、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
    x

    -3
    -2
    -1
    0
    1

    y

    -6
    0
    4
    6
    6

    给出下列说法:
    ①抛物线与y轴的交点为(0,6);
    ②抛物线的对称轴在y轴的右侧;
    ③抛物线的开口向下;
    ④抛物线与x轴有且只有1个公共点.
    以上说法正确是( )
    A.① B.①② C.①②③ D.①②③④
    9、如图,直线与y轴交于点A,与直线交于点B,若抛物线的顶点在直线上移动,且与线段、都有公共点,则h的取值范围是( )

    A. B. C. D.
    10、在抛物线的图象上有三个点,,,则、、的大小关系为( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.

    2、已知二次函数的图象经过点,那么a的值为_____.
    3、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
    4、如图,抛物线过点,且对称轴为直线,有下列结论:;;抛物线经过点与点,则;方程的一个解是;,其中所有正确的结论是__________.

    5、二次函数的图象的顶点坐标为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(﹣3,0)、B(1,0)两点,与y轴交于点C,连接BC,点P是位于x轴上方抛物线上的一个动点,过P作PE⊥x轴,垂足为点E.

    (1)求抛物线的函数表达式;
    (2)是否存在点P,使得以A、P、E为顶点的三角形与△BOC相似?若存在,求出点P的坐标,说明理由;
    (3)是否存在点P,使得四边形ABCP的面积最大?若存在,请求出点P的坐标,请说明理由.
    2、如图,一名垒球运动员进行投球训练,站在点O开始投球,球出手的高度是2米,球运动的轨迹是抛物线,当球达到最高点E时,水平距离EG=20米,与地面的高度EF=6米,掷出的球恰好落在训练墙AB上B点的位置,AB=3米.

    (1)求抛物线的函数关系式;
    (2)求点O到训练墙AB的距离OA的长度.
    3、有一个抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为12m.现将它的图形放在如图所示的直角坐标系中.
    (1)求这条抛物线的解析式.
    (2)一艘宽为4米,高出水面3米的货船,能否从桥下通过?

    4、某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).

    (1)请求出y(万件)与x(元/件)之间的函数关系式;
    ①求出当4≤x≤8时的函数关系式;
    ②求出当8<x≤28时的函数关系式.
    (2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;
    (3)求出年利润的最大值.
    5、已知二次函数的图像经过点,,.
    (1)求二次函数的表达式;
    (2)若二次函数的图像与轴交于、两点,与轴交于点,其顶点为,则以,,,为顶点的四边形的面积为__________;
    (3)将二次函数的图像向左平移个单位后恰好经过坐标原点,则的值为__________.

    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据二次函数图象左加右减,上加下减的平移规律进行求解.
    【详解】
    解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
    再向上平移5个单位长度,得:y=(x﹣3)2+5,
    故选:B.
    【点睛】
    本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
    2、C
    【解析】
    【分析】
    由二次函数的性质,取得开口方向以及对称轴,进而可确定出的范围.
    【详解】
    解:,
    抛物线开口向上,对称轴为,
    当时,随的增大而减小,
    在时,随的增大而减小,

    解得,
    故选:C.
    【点睛】
    本题考查二次函数图象性质,不等式的解法.能够得出关于的不等式,并正确求解不等式是解题关键.
    3、B
    【解析】
    【分析】
    根据抛物线的开口方向和对称轴的位置确定b的符号,由抛物线与x轴的交点个数确定△的符号,由抛物线与y轴的交点位置确定c的符号,即可得出答案.
    【详解】
    解:∵抛物线的开口向上,
    ∴a>0,
    ∵抛物线的对称轴在y轴的右侧,
    ∴>0,
    ∴b<0,
    ∵抛物线与y轴的交点在x轴的上方,
    ∴c>0,
    ∵抛物线与x轴有一个交点,
    ∴Δ=0,
    故选:B.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与系数的关系,牢记抛物线的对称轴公式.
    4、D
    【解析】
    【分析】
    由图象的性质可知在直线处取得最大值,将代入解析式计算求解即可.
    【详解】
    解:由图象的性质可知,在直线处取得最大值
    ∴将代入中得
    ∴最大值为2
    故答案为:2.
    【点睛】
    本题考查了二次函数的最值.解题的关键在于掌握二次函数的图象与性质.
    5、C
    【解析】
    【分析】
    根据图像,确定a,b,c的符号,根据对称轴,确定b,a的关系,当x=-1时,得到a-b+c=0,确定a,c的关系,从而化简一元二次方程,求其根即可,利用平移的思想,把y=的图像向上平移1个单位即可,确定方程的根.
    【详解】
    ∵抛物线开口向上,
    ∴a>0,
    ∵抛物线与y轴的交点在y轴的负半轴上,
    ∴c<0,
    ∵抛物线的对称轴在y轴的右边,
    ∴b<0,
    ∴,
    故①正确;
    ∵二次函数的图像与x轴交于点,
    ∴a-b+c=0,
    根据对称轴的左侧,y随x的增大而减小,
    当x=-2时,y>0即,
    故②正确;
    ∵,

    ∴b= -2a,
    ∴3a+c=0,
    ∴2a+c=2a-3a= -a<0,
    故③正确;
    根据题意,得,
    ∴,
    解得,
    故④错误;
    ∵=0,
    ∴,
    ∴y=向上平移1个单位,得y=+1,
    ∴为方程的两个根,且且.
    故⑤正确;
    故选C.
    【点睛】
    本题考查了抛物线的图像与系数的符号,抛物线的对称性,抛物线与一元二次方程的关系,抛物线的增减性,平移,熟练掌握抛物线的性质,抛物线与一元二次方程的关系是解题的关键.
    6、C
    【解析】
    【分析】
    先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
    【详解】
    解:抛物线的对称轴为:直线,
    ∵,
    当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
    7、C
    【解析】
    【分析】
    根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.
    【详解】
    解:∵图象开口向下,
    ∴a<0,
    ∵对称轴为直线x=1,
    ∴−=1,
    ∴b=−2a>0,
    ∵图象与y轴的交点在x轴的上方,
    ∴c>0,
    ∴abc<0,
    ∴①说法正确,
    由图象可知抛物线与x轴有两个交点,
    ∴b2−4ac>0,
    ∴②错误,
    由图象可知,当x=−2时,y<0,
    ∴4a−2b+c=4a−2(−2a)+c=8a+c<0,
    ∴③正确,
    由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,
    ∵对称轴是x=1,
    ∴另一个根为x=5,
    ∴④正确,
    ∴正确的有①③④,
    故选:C.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.
    8、C
    【解析】
    【分析】
    根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
    【详解】
    解:根据图表,抛物线与y轴交于(0,6),故①正确;
    ∵抛物线经过点(0,6)和(1,6),
    ∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
    当x<时,y随x的增大而增大,
    ∴抛物线开口向下,故③正确,
    ∵抛物线经过点(-2,0),
    设抛物线经过点(x,0),
    ∴x==,
    解得:x=3,
    ∴抛物线经过(3,0),即抛物线与x轴有2个交点(-2,0)和(3,0),
    故④错误;
    综上,正确的有①②③,
    故选:C.
    【点睛】
    本题考查了二次函数及其图象性质,解决问题的关键是注意表格数据的特点,结合二次函数性质作判断.
    9、B
    【解析】
    【分析】
    将与联立可求得点B的坐标,然后由抛物线的顶点在直线可求得k=−h,于是可得到抛物线的解析式为y=(x−h)2−h,由图形可知当抛物线经过点B和点C时抛物线与线段AB、BO均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.
    【详解】
    解:∵将与联立得:,
    解得:.
    ∴点B的坐标为(−2,1),
    由抛物线的解析式可知抛物线的顶点坐标为(h,k),
    ∵将x=h,y=k,代入得y=−x得:−h=k,解得k=−h,
    ∴抛物线的解析式为y=(x−h)2−h,
    如图1所示:当抛物线经过点C时,

    将C(0,0)代入y=(x−h)2−h得:h2−h=0,解得:h1=0(舍去),h2=;
    如图2所示:当抛物线经过点B时,

    将B(−2,1)代入y=(x−h)2−h得:(−2−h)2−h=1,整理得:2h2+7h+6=0,解得:h1=−2,h2=−(舍去).
    综上所述,h的范围是−2≤h≤,即−2≤h≤
    故选:B.
    【点睛】
    本题主要考查的是二次函数的综合应用,解答本题主要应用了一次函数的交点与一元二次方程组的关系、待定系数法求二次函数的解析式,通过平移抛物线探究出抛物线与线段AB、BO均有交点时抛物线经过的“临界点”为点B和点O是解题解题的关键.
    10、C
    【解析】
    【分析】
    把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
    【详解】
    解:把三个点,,的横坐标代入解析式得,
    ;;;
    所以,,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
    二、填空题
    1、(,)
    【解析】
    【分析】
    设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
    【详解】
    解:∵点A是抛物线图像上一点
    故设A(x,x2),
    ∵将点A向下平移2个单位到点B,
    故B(x,x2-2)
    ∵把A绕点B顺时针旋转120°得到点C,如图,

    过点B作BD⊥AB于B,过点C作CD⊥BD于D,
    AB=BC=2,∠ABC=120°,∠ABD=90°,
    ∴∠DBC=30°
    故CD=,BD=,
    故C(x+,x2-3),
    把C(x+,x2-3)代入,
    ∴x2-3=(x+)2,
    解得x=-
    ∴A(-,3)
    故答案为:(,3).
    【点睛】
    此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
    2、
    【解析】
    【分析】
    把已知点的坐标代入抛物线解析式可得到的值.
    【详解】
    解:二次函数的图象经过点,

    解得:.
    故答案为:.
    【点睛】
    本题考查了待定系数法求二次函数解析式,解题的关键是掌握二次函数图象上点的坐标满足其解析式.
    3、2.5.
    【解析】
    【分析】
    根据二次函数的对称轴公式直接计算即可.
    【详解】
    解:∵的对称轴为(min),
    故:最佳加工时间为2.5min,
    故答案为:2.5.
    【点睛】
    此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
    4、②⑤
    【解析】
    【分析】
    由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,再由抛物线对称轴为直线,得到,即,即可判断①;根据抛物线的对称性可知抛物线过点,则当时,,由,可得,即可判断②;由抛物线对称轴为直线,且开口向上,则抛物线上的点,离对称轴水平距离越大,函数值越大,即可判断③;由cx2+bx+a=0,方程两边同时除以a得,再由方程的两个根分别为,,得到,,则即为,由此即可判断④;当对应的函数值为,
    当对应的函数值为,又时函数取得最小值,则,由此即可判断⑤.
    【详解】
    解:由图象可知,抛物线开口向上,则,抛物线与轴交于负半轴,则,
    ∵抛物线对称轴为直线,
    ∴,即,
    ,故①错误;
    抛物线过点,且对称轴为直线,
    抛物线过点,
    当时,,

    ∴,故②正确;
    抛物线对称轴为直线,且开口向上,
    ∴抛物线上的点,离对称轴水平距离越大,函数值越大,
    ∵点(4,)与直线的距离为3,点(-3,)与直线的距离为4,
    ,故③错误;
    ∵cx2+bx+a=0
    ∴方程两边同时除以a得,
    ∵方程的两个根分别为,,
    ∴,,
    ∴即为,

    解得或,故④错误;
    当对应的函数值为,
    当对应的函数值为,
    又时函数取得最小值,
    ∴,
    ∴,
    又∵,
    ∴,
    ∴,故⑤正确.
    故答案为:②⑤.
    【点睛】
    本题主要考查了二次函数图像与其系数的关系,解一元二次方程,一元二次方程根与系数的关系,二次函数图像的性质等等,熟知相关知识是解题的关键.
    5、
    【解析】
    【分析】
    根据的意义直接解答即可.
    【详解】
    解:二次函数的图象的顶点坐标是.
    故答案为.
    【点睛】
    本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:(a≠0)的顶点坐标为(0,c).
    三、解答题
    1、 (1)y=-x2-2x+3
    (2)P1(-2,3)或P2(,)
    (3)点P的坐标为(-,),理由见解析.
    【解析】
    【分析】
    (1)把A(-3,0)、B(1,0)代入y=-x2+bx+c求出b、c的值即可求出该函数表达式;
    (2)设P(m,-m2-2m+3),表示出PE、AE的长,分或两种情况讨论即可找到P的坐标;
    (3)连接AC交PE于点H,把四边形分成两部分,表示出S四边形ABCP=S△PAC+S△ABC即可根据二次函数最值找到P的坐标.
    (1)
    把A(-3,0)、B(1,0)代入y=-x2+bx+c得:

    解得:,
    ∴抛物线的函数解析式为y=-x2-2x+3;
    (2)
    ∵A(-3,0),B(1,0),C(0,3),
    ∴OC=3,OB=1,
    ∴设P(m,-m2-2m+3),
    ∴PE=-m2-2m+3,AE=m+3,
    根据题意得:,
    解得:m1=-2,m2=-3(舍去),
    ∴-m2-2m+3=
    ∴P1(-2,3),
    或,
    解得:m1=,m2=−3(舍去),

    ∴P2(,),
    综上,点P坐标为P1(-2,3)或P2(,).
    (3)
    连接AC交PE于点H,

    由A(-3,0),C(0,3)得直线AC的表达式为:y=x+3,
    设P(m,-m2-2m+3),则H(m,m+3),
    ∴PH=-m2-3m
    ∴S△PAC=⋅(−m2−3m)×3
    ∴S四边形ABCP=S△PAC+S△ABC=
    当m=−时,S最大=,此时点P的坐标为(-,).
    【点睛】
    本题考查待定系数法求解析式,三角形的相似以及面积最值问题,熟练掌握好二次函数相关性质是解题基础,并能分类讨论,数形相结合是解题的关键.
    2、 (1)抛物线的关系式为y=-0.01(x-20)2+6;
    (2)点O到训练墙AB的距离OA的长度为(20+10)米.
    【解析】
    【分析】
    (1)根据抛物线的顶点设关系式为y=a(x-20)2+6,再根据点C的坐标可得关系式;
    (2)把y=3代入可得答案.
    (1)
    解:由题意得,顶点E(20,6)和C(0,2),
    设抛物线的关系式为y=a(x-20)2+6,
    ∴2=a(0-20)2+6,
    解得a=-0.01,
    ∴抛物线的关系式为y=-0.01(x-20)2+6;
    (2)
    (2)当y=3时,3=-0.01(x-20)2+6,
    解得x1=20+10,x2=20-10(舍去),
    答:点O到训练墙AB的距离OA的长度为(20+10)米.
    【点睛】
    本题考查了二次函数的实际应用,利用待定系数法得到抛物线的关系式是解题关键.
    3、 (1)
    (2)一艘宽为4米,高出水面3米的货船,能从桥下通过,理由见解析.
    【解析】
    【分析】
    (1)根据抛物线经过原点,可设抛物线为再把把代入抛物线的解析式,利用待定系数法求解抛物线的解析式即可;
    (2)把代入抛物线的解析式求解函数值,再与3米进行比较,即可得到答案.
    (1)
    解:根据题意抛物线经过了原点,设抛物线为:
    把代入抛物线的解析式得:

    解得:
    所以抛物线为:
    (2)
    解:因为一艘宽为4米,高出水面3米的货船行驶时航线在正中间,
    所以当时,


    所以一艘宽为4米,高出水面3米的货船,能从桥下通过.
    【点睛】
    本题考查的是二次函数的实际应用,熟练的把实际生活中的问题化为数学问题,建立数学模型是解本题的关键.
    4、 (1)①y=;②y=-x+28
    (2)w=160-640x(4≤x≤8)-(x-16)2+114(8 (3)年利润最大为114元
    【解析】
    【分析】
    (1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入计算即可;
    ②当8<x≤28时,设y=k′x+b(k′≠0). 分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,计算即可;
    (2)分4≤x≤8、8<x≤28两种情况,利润w(万元)与x(元/件)之间的函数关系式;
    (3)分4≤x≤8、8<x≤28两种情况,分别求出w的最大值,进而求解;
    (1)
    ①当4≤x≤8时,设(k≠0).
    将点A(4,40)的坐标代入,得k=4×40=160,
    ∴y=
    ②当8<x≤28时,设y=k′x+b(k′≠0).
    分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,得解得
    ∴y=-x +28
    (2)
    当4≤x≤8时,w=
    当8<x≤28时,w=(x-4)y=(x-4)(-x+28)=-x2+32x-112
    =-(x-16)2+114
    综上可知,w(万元)与x(元/件)之间的函数关系式为

    (3)
    当4≤x≤8时,
    ∵-640<0,
    ∴w随x增大而增大,
    ∴当x=8时,w有最大值,为
    当8<x≤28时,
    ∵-1<0
    ∴当x=16时,w有最大值,为114
    ∵80<114
    ∴当每件的销售价格定为16元时,年利润最大为114元
    【点睛】
    本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.
    5、 (1)
    (2)18
    (3)1或5
    【解析】
    【分析】
    (1)把点,,代入二次函数解析式:y=ax2+bx+c,求出即可;
    (2)分别求出A、B、C、P四点的坐标.利用S四边形ACBP=S△ABP+S△ABC进行计算;
    (3)观察抛物线的图像可直接得到结果.
    (1)
    解:(1)设二次函数的表达式为(,,为常数,),
    由题意知,该函数图象经过点,,,得

    解得,
    ∴二次函数的表达式为.
    (2)
    解:∵
    当y=0时,
    解得:x1=1,x2=5
    ∴点A坐标为(1,0)、点B坐标为(5,0);
    当x=0时,y=-5,
    ∴点C坐标为(0,-5);
    把化为y=-(x-3)2+4
    ∴点P坐标为(3,4);
    由题意可画图如下:

    ∴S四边形ACBP=S△ABP+S△ABC
    =
    =18,
    故答案是:18;
    (3)
    由图像知:将抛物线向左平移1个单位长度或5个单位长度,抛物线经过原点.
    故:m=1或.
    【点睛】
    本题考查了待定系数法求二次函数的解析式:二次函数的解析式可设为一般式、顶点式或交点式.也考查了二次函数的性质.解题的关键是掌握数形结合能力.

    相关试卷

    2021学年第30章 二次函数综合与测试优秀课时训练: 这是一份2021学年第30章 二次函数综合与测试优秀课时训练,共28页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试精品课时练习,共31页。试卷主要包含了抛物线的顶点坐标为等内容,欢迎下载使用。

    初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀巩固练习,共28页。试卷主要包含了已知点,,都在函数的图象上,则等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map