搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专项测评试卷(精选含详解)

    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专项测评试卷(精选含详解)第1页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专项测评试卷(精选含详解)第2页
    2021-2022学年最新冀教版九年级数学下册第三十章二次函数专项测评试卷(精选含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中冀教版第30章 二次函数综合与测试随堂练习题

    展开

    这是一份初中冀教版第30章 二次函数综合与测试随堂练习题,共29页。试卷主要包含了同一直角坐标系中,函数和,下列函数中,随的增大而减小的是等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数专项测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、下列实际问题中的y与x之间的函数表达式是二次函数的是( )
    A.正方体集装箱的体积,棱长xm
    B.小莉驾车以的速度从南京出发到上海,行驶xh,距上海ykm
    C.妈妈买烤鸭花费86元,烤鸭的重量y斤,单价为x元/斤
    D.高为14m的圆柱形储油罐的体积,底面圆半径xm
    2、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )

    A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
    3、对于二次函数,下列说法正确的是( )
    A.若,则y随x的增大而增大 B.函数图象的顶点坐标是
    C.当时,函数有最大值-4 D.函数图象与x轴有两个交点
    4、同一直角坐标系中,函数和(是常数,且)的图象可能是( )
    A. B.
    C. D.
    5、下列函数中,随的增大而减小的是( )
    A. B.
    C. D.
    6、已知二次函数的图象如图所示,对称轴为直线,下列结论中正确的是( )

    A. B. C. D.
    7、将抛物线y=x2先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为(  )
    A.y=(x+3)2+5 B.y=(x﹣3)2+5 C.y=(x+5)2+3 D.y=(x﹣5)2+3
    8、如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①abc>0;②b2﹣4ac>0;③当y<0时,x<﹣1或x>3;④3a+c=0.其中正确的有( )

    A.4个 B.3个 C.2个 D.1个
    9、已知二次函数y=ax2+4x+1的图象与x轴有公共点,则a的取值范围是( )
    A.a<4 B.a≤4 C.a<4且a≠0 D.a≤4且a≠0
    10、若二次函数y=a(x+b)2+c(a≠0)的图象,经过平移后可与y=(x+3)2的图象完全重合,则a,b,c的值可能为( )
    A.a=1,b=0,c=﹣2 B.a=2,b=6,c=0
    C.a=﹣1,b=﹣3,c=0 D.a=﹣2,b=﹣3,c=﹣2
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,已知点A是抛物线图像上一点,将点A向下平移2个单位到点B,再把A绕点B顺时针旋转120°得到点C,如果点C也在该抛物线上,那么点A的坐标是______.

    2、已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为__________________.
    3、已知二次函数,当自变量x分别取1、4、5时,对应的函数值分别为,,,则,,的大小关系是________(用“<”号连接).
    4、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
    5、点P(m,n)在对称轴为x=1的函数的图像上,则m-n的最大值为____.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知二次函数的图像经过点(1,4)和点(2,3).
    (1)求这个二次函数的表达式;
    (2)求该二次函数图像的顶点坐标.
    (3)当x在什么范围内时,y随x的增大而减小?
    2、已知直线y1=kx+1(k>0)与抛物线y2=x2.

    (1)当﹣4≤x≤3时,函数y1与y2的最大值相等,求k的值;
    (2)如图①,直线y1=kx+1与抛物线y2=x2交于A,B两点,与y轴交于F点,点C与点F关于原点对称,求证:S△ACF:S△BCF=AC:BC;
    (3)将抛物线y2=x2先向上平移1个单位,再沿直线y1=kx+1的方向移动,使向右平行移动的距离为t个单位,如图②所示,直线y1=kx+1分别交x轴,y轴于E,F两点,交新抛物线于M,N两点,D是新抛物线与y轴的交点,当△OEF∽△DNF时,试探究t与k的关系.
    3、如图,在平面直角坐标系中,已知点的坐标为,且,抛物线()图象经过,,三点.

    (1)求抛物线的解析式;
    (2)是抛物线对称轴上的一点,当的值最小时,求点坐标;
    (3)若点是直线下方的抛物线上的一个动点,作于点,当的值最大时,求此时点的坐标及的最大值.
    4、如图, 在平面直角坐标系 中, 直线 与 牰交于点 , 与 轴交于点 . 点C为拋物线 的顶点.

    (1)用含 的代数式表示顶点 的坐标:
    (2)当顶点 在 内部, 且 时,求抛物线的表达式:
    (3)如果将抛物线向右平移一个单位,再向下平移 个单位后,平移后的抛物线的顶 点 仍在 内, 求 的取值范围.
    5、已知一抛物线的顶点为(2,4),图象过点(1,3).
    (1)求抛物线的解析式;
    (2)动点P(x,5)能否在抛物线上?请说明理由;
    (3)若点A(a,y1),B(b,y2)都在抛物线上,且a<b<0,比较y1,y2的大小,并说明理由.

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据题意,列出关系式,即可判断是否是二次函数.
    【详解】
    A.由题得:,不是二次函数,故此选项不符合题意;
    B.由题得:,不是二次函数,故此选项不符合题意;
    C.由题得:,不是二次函数,故此选项不符合题意;
    D.由题得:,是二次函数,故此选项符合题意.
    故选:D.
    【点睛】
    本题考查二次函数的定义,形如的形式为二次函数,掌握二次函数的定义是解题的关键.
    2、C
    【解析】
    【分析】
    根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
    【详解】
    解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则

    故①正确;
    ∵二次函数的图象经过点,
    则当时,
    对称轴为直线,则时的函数值与的函数值相等,
    时,

    故②不正确
    对称轴为直线,
    ∴,即
    故③正确;
    ∵二次函数图象与轴有两个交点,则

    故④错误;
    对称轴为直线,则时的函数值与的函数值相等,

    ,是抛物线上两点,且,抛物线开口向上,

    故⑤正确
    故正确的是①③⑤
    故选C
    【点睛】
    本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
    3、A
    【解析】
    【分析】
    先将二次函数的解析式化为顶点式,再逐项判断即可求解.
    【详解】
    解:∵,且 ,
    ∴二次函数图象开口向下,
    ∴A、若,则y随x的增大而增大,故本选项正确,符合题意;
    B、函数图象的顶点坐标是,故本选项错误,不符合题意;
    C、当时,函数有最大值-2,故本选项错误,不符合题意;
    ∵ ,
    ∴D、函数图象与x轴没有交点,故本选项错误,不符合题意;
    故选:A
    【点睛】
    本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.
    4、D
    【解析】
    【分析】
    根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.
    【详解】
    解:选项A:由的图象可得:
    由的图象可得:则 故A不符合题意;
    选项B:由的图象可得:
    由的图象可得:则
    而抛物线的对称轴为: 则 故B不符合题意;
    选项C:由的图象可得:
    由的图象可得:则 故C不符合题意;
    选项D:由的图象可得:
    由的图象可得:则
    而抛物线的对称轴为: 则 故D符合题意;
    故选D
    【点睛】
    本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.
    5、C
    【解析】
    【分析】
    根据各个选项中的函数解析式,可以判断出y随x的增大如何变化,从而可以解答本题.
    【详解】
    解:A.在中,y随x的增大而增大,故选项A不符合题意;
    B.在中,y随x的增大与增大,不合题意;
    C.在中,当x>0时,y随x的增大而减小,符合题意;
    D.在,x>2时,y随x的增大而增大,故选项D不符合题意;
    故选:C.
    【点睛】
    本题考查了正比例函数的性质、二次函数的性质、反比例函数的性质,正确掌握相关函数增减性是解题关键.
    6、D
    【解析】
    【分析】
    由抛物线的开口方向判断与0的关系,由抛物线与轴的交点判断与0的关系,然后根据对称轴确定的符号,进而对所得结论进行判断.
    【详解】
    解:图象开口向上,与轴交于负半轴,对称轴在轴右侧,
    得到:,,,,
    A、,,,得,故选项错误,不符合题意;
    B、对称轴为直线,得,解得,故选项错误,不符合题意;
    C、当时,得,整理得:,故选项错误,不符合题意;
    D、根据图象知,抛物线与轴的交点横坐标,是一正一负,即,根据,整理得:,根据对称性可得出,则,故选项正确,符合题意;
    故选:D.
    【点睛】
    本题主要考查二次函数图象与二次函数系数之间的关系,解题的关键是掌握二次函数系数符号由抛物线开口方向、对称轴、抛物线与轴的交点、抛物线与轴交点的个数确定.
    7、B
    【解析】
    【分析】
    根据二次函数图象左加右减,上加下减的平移规律进行求解.
    【详解】
    解:将抛物线y=x2先向右平移3个单位长度,得:y=(x﹣3)2;
    再向上平移5个单位长度,得:y=(x﹣3)2+5,
    故选:B.
    【点睛】
    本题考察了二次函数抛物线的平移问题,解题的关键是根据左加右减,上加下减的平移规律进行求解.
    8、B
    【解析】
    【分析】
    ①根据函数图象及函数的对称轴在y轴右侧,则ab<0,而c>0,即可求解;②抛物线和x轴有两个交点,即可求解;③点B坐标为(﹣1,0),点A(3,0),即可求解;④对称轴为x=1,则b=﹣2a,点B(﹣1,0),故a﹣b+c=0,即可求解.
    【详解】
    解:①∵函数图象开口向下

    又函数的对称轴在y轴右侧,


    ∵抛物线与y轴正半轴相交,
    ∴c>0,
    ∴abc<0,故原答案错误,不符合题意;
    ②∵抛物线和x轴有两个交点,
    ∴b2﹣4ac>0正确,符合题意;
    ③∵点B坐标为(﹣1,0),且对称轴为x=1,
    ∴点A(3,0),
    ∴当y<0时,x<﹣1或x>3.故正确,符合题意;
    ④∵函数的对称轴为:x=﹣=1,
    ∴b=﹣2a,
    ∵点B坐标为(﹣1,0),
    ∴a﹣b+c=0,
    而b=﹣2a,

    即3a+c=0,正确,符合题意;
    故选:B.
    【点睛】
    本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点等.
    9、D
    【解析】
    【分析】
    由二次函数的定义得a≠0,再由二次函数y=ax2+4x+1的图象与x轴有公共点得到Δ≥0,解不等式即可.
    【详解】
    解:∵二次函数y=ax2+4x+1的图象与x轴有公共点,
    ∴Δ=42﹣4a×1≥0,且a≠0,
    解得:a≤4,且a≠0.
    故选:D.
    【点睛】
    本题考查二次函数的图象与x轴的交点,关键是Δ=b2−4ac决定抛物线与x轴交点的个数.
    10、A
    【解析】
    【分析】
    根据二次函数的平移性质得出a不发生变化,即可判断a=1.
    【详解】
    解:∵二次函数y=a(x+b)2+c的图形,经过平移后可与y=(x+3)2的图形完全叠合,
    ∴a=1.
    故选:A.
    【点睛】
    此题主要考查了二次函数的平移性质,根据已知得出a的值不变是解题关键.
    二、填空题
    1、(,)
    【解析】
    【分析】
    设A(x,x2),根据平移、旋转的性质求出C点坐标,代入抛物线求出x,故可求解.
    【详解】
    解:∵点A是抛物线图像上一点
    故设A(x,x2),
    ∵将点A向下平移2个单位到点B,
    故B(x,x2-2)
    ∵把A绕点B顺时针旋转120°得到点C,如图,

    过点B作BD⊥AB于B,过点C作CD⊥BD于D,
    AB=BC=2,∠ABC=120°,∠ABD=90°,
    ∴∠DBC=30°
    故CD=,BD=,
    故C(x+,x2-3),
    把C(x+,x2-3)代入,
    ∴x2-3=(x+)2,
    解得x=-
    ∴A(-,3)
    故答案为:(,3).
    【点睛】
    此题主要考查二次函数与几何综合,解题的关键是熟知坐标与函数的关系、平移与旋转的特点及直角三角形的性质.
    2、或
    【解析】
    【分析】
    设二次函数的解析式为y=ax2+bx+c(a≠0),由图象与x轴的另一交点到原点的距离为1可得到抛物线与x轴的另一交点坐标为(1,0)或(-1,0),然后分别把(0,0)、(1,0)、(-,-)或(0,0)、(-1,0)、(-,-)代入解析式中得到两个方程组,解方程组即可确定解析式.
    【详解】
    解:设二次函数的解析式为y=ax2+bx+c(a≠0),
    当图象与x轴的另一交点坐标为(1,0)时,
    把(0,0)、(1,0)、(-,-)代入得
    ,解得,
    则二次函数的解析式为;
    当图象与x轴的另一交点坐标为(-1,0)时,
    把(0,0)、(-1,0)、(-,-)代入得
    ,解得,
    则二次函数的解析式为y=x2+x.
    所以该二次函数解析式为y=-x2+x或y=x2+x.
    故答案为:y=-x2+x或y=x2+x.
    【点睛】
    本题考查了待定系数法求二次函数的解析式:先设二次函数的解析式为y=ax2+bx+c(a≠0),然后把二次函数图象上三个点的坐标代入得到关于a、b、c的三元一次方程组,解方程组求出a、b、c的值,从而确定二次函数的解析式.也考查了分类讨论思想的运用.
    3、y1<y2<y3
    【解析】
    【分析】
    利用二次函数图象上点的坐标特征可分别求出y1,y2,y3的值,结合a>0,即可得出a+c<4a+c<9a+c,即y1<y2<y3.
    【详解】
    解:当x=1时,y1=a(1-2)2+c=a+c;
    当x=4时,y2=a(4-2)2+c=4a+c;
    当x=5时,y3=a(5-2)2+c=9a+c.
    ∵a>0,
    ∴a+c<4a+c<9a+c,
    ∴y1<y2<y3.
    故答案为:y1<y2<y3.
    【点睛】
    本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征,分别求出y1,y2,y3的值是解题的关键.
    4、2.5.
    【解析】
    【分析】
    根据二次函数的对称轴公式直接计算即可.
    【详解】
    解:∵的对称轴为(min),
    故:最佳加工时间为2.5min,
    故答案为:2.5.
    【点睛】
    此题主要考查了二次函数性质的应用,涉及求顶点坐标、对称轴方程等,记住抛物线顶点公式是解题关键.
    5、##0.25
    【解析】
    【分析】
    根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m−n的最大值,本题得以解决.
    【详解】
    解:∵二次函数y=x2+ax+2的对称轴为x=1,
    ∴,解得a=-2,
    ∴二次函数解析式为y=x2-2x+2,
    ∵点P(m,n)在二次函数y=x2-2x+2的图象上,
    ∴n=m2-2m+2,
    ∴m−n=m−(m2-2m+2)=-m2+3m-2=−(m−)2+,
    ∴当m=时,m−n取得最大值,此时m−n=,
    故答案为:.
    【点睛】
    本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
    三、解答题
    1、 (1)
    (2)
    (3)当时,y随x的增大而减小
    【解析】
    【分析】
    (1)将点(1,4)和(2,3)代入中,得,进行计算即可得;
    (2)将配方得,即可得;
    (3)根据二次函数的性质得即可得.
    (1)
    解:将点(1,4)和(2,3)代入中,得

    解得
    则该二次函数表达式为.
    (2)
    解:
    配方得:,
    则顶点坐标为(1,4).
    (3)
    解:根据二次函数的性质得,当时,y随x的增大而减小.
    【点睛】
    本题考查了二次函数,解题的关键是掌握二次函数的性质.
    2、 (1)
    (2)证明见解析
    (3)
    【解析】
    【分析】
    (1)根据函数图象的性质可知,当时,, ,,有,求解即可;
    (2)如图,分别过点作交点分别为,设两点横坐标分别为,由题意知:,, ,,;有,,,,故可证;
    (3)平移后的二次函数解析式为,与y轴的交点坐标为,可知,有相同的纵坐标,可得,解得,知点横纵标,在点一次函数与二次函数相交,有相同的纵坐标,可得,进而可得的关系.
    (1)
    解:∵,
    ∴根据函数图象的性质可知,当时,,


    解得.
    (2)
    证明:如图,分别过点作交点分别为


    设两点横坐标分别为,
    由题意知:
    ∴,



    ∵,


    ∴.
    (3)
    解:由题意知,平移后的二次函数解析式为,与y轴的交点坐标为,


    ∴有相同的纵坐标

    解得
    故可知点横纵标
    ∵在点一次函数与二次函数相交,有相同的纵坐标

    解得.
    【点睛】
    本题考查了一次函数与二次函数的综合,相似三角形等知识.解题的关键在于灵活运用知识求解.
    3、 (1);
    (2)();
    (3)点P(2,-6),PD最大值为
    【解析】
    【分析】
    (1)根据点B的坐标,得出OB的长,进而根据即可得到OA、OC的长,利用待定系数法求出函数解析式;
    (2)利用配方法求出抛物线的对称轴,连接AC,交对称轴于一点即为点M,此时的值最小,求出直线AC的解析式,当时求出y的值即可得到点M的坐标;
    (3)过点P作PH平行于y轴,交AC于点H,根据等腰直角三角形的性质求出∠OAC=∠OCA=45°,根据平行线的性质求出∠PHD=∠OCA=45°,设点P(x,),则点H(x,x-4),根据正弦函数定义得到,根据函数的性质得解问题.
    (1)
    解:∵点的坐标为,
    ∴OB=1,
    ∵,
    ∴OA=OC=4,
    ∴点A的坐标为(4,0),点C的坐标为(0,-4),
    将点A、B、C的坐标代入中,得
    ,解得,
    ∴抛物线的解析式为;
    (2)
    解:∵,
    ∴抛物线的对称轴为直线,
    连接AC,交对称轴于一点即为点M,此时的值最小,
    设直线AC的解析式为,
    ∴,解得,
    ∴直线AC的解析式为y=x-4,
    当时,,
    ∴点M的坐标为();
    (3)
    解:过点P作PH平行于y轴,交AC于点H,
    ∵OA=OC,
    ∴∠OAC=∠OCA=45°,
    ∴∠PHD=∠OCA=45°,
    设点P(x,),则点H(x,x-4),
    ∴,
    ∵,
    ∴PD有最大值,当x=2时,PD最大值为,
    此时点P(2,-6).

    【点睛】
    此题考查了待定系数法求抛物线解析式,抛物线的对称轴,化一般式为顶点式,最短路径问题,二次函数的性质,锐角三角函数,正确掌握抛物线的各知识点是解题的关键,这是一道二次函数与一次函数的综合题.
    4、 (1)
    (2);
    (3)1<a<3
    【解析】
    【分析】
    (1)利用配方法将抛物线解析式化为顶点式即可解答;
    (2)求出点A、B的坐标,利用三角形面积公式求解a值即可解答;
    (3)根据点的坐标平移规律“右加左减,上加下减”得出P点坐标,再根据条件得出a的一元一次不等式组,解不等式组即可求解
    (1)
    解:拋物线 ,
    ∴顶点C的坐标为;
    (2)
    解:对于,当x=0时,y=5,当y=0时,x=5,
    ∴A(5,0),B(0,5),
    ∵顶点 在 内部, 且 ,
    ∴,
    ∴a=2,
    ∴拋物线的表达式为 ;
    (3)
    解:由题意,平移后的抛物线的顶点P的坐标为,
    ∵平移后的抛物线的顶 点 仍在 内,
    ∴,
    解得:1<a<3,
    即 的取值范围为1<a<3.
    【点睛】
    本题考查求二次函数的顶点坐标和表达式、二次函数的图象平移、一次函数的图象与坐标轴的交点问题、坐标与图象、解一元一次不等式组,熟练掌握相关知识的联系与运用,第(3)小问正确得出不等式组是解答的关键.
    5、 (1)
    (2)不在,见解析
    (3)y1<y2,见解析
    【解析】
    【分析】
    (1)根据已知条件设抛物线的解析式为顶点式,把点(1,3)的坐标代入所设的解析式中即可求得a,从而可求得函数解析式;
    (2)把点P的纵坐标代入抛物线的解析式中,得到关于x的二元一次方程,若方程有解,则点P在抛物线,否则不在抛物线上;
    (3)抛物线的对称轴为直线x=2,根据抛物线的增减性质即可比较大小.
    (1)
    设抛物线的解析式为
    把点(1,3)的坐标代入中,得a+4=3

    即抛物线的解析式为;
    (2)
    动点P(x,5)不在抛物线上
    理由如下:
    在中,当y=5时,得

    此方程无解
    故点P不在抛物线上;
    (3)
    y1<y2
    理由如下:
    抛物线的对称轴为直线x=2
    ∵二次项系数−1

    相关试卷

    2020-2021学年第30章 二次函数综合与测试优秀练习题:

    这是一份2020-2021学年第30章 二次函数综合与测试优秀练习题,共25页。试卷主要包含了抛物线,,的图象开口最大的是,二次函数的最大值是等内容,欢迎下载使用。

    2020-2021学年第30章 二次函数综合与测试精品课时训练:

    这是一份2020-2021学年第30章 二次函数综合与测试精品课时训练,共26页。

    冀教版九年级下册第30章 二次函数综合与测试精品综合训练题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试精品综合训练题,共33页。试卷主要包含了二次函数图像的顶点坐标是,根据表格对应值等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map