![2022年冀教版九年级数学下册第三十章二次函数必考点解析试题(含详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12720907/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版九年级数学下册第三十章二次函数必考点解析试题(含详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12720907/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年冀教版九年级数学下册第三十章二次函数必考点解析试题(含详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12720907/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
冀教版九年级下册第30章 二次函数综合与测试复习练习题
展开
这是一份冀教版九年级下册第30章 二次函数综合与测试复习练习题,共35页。试卷主要包含了一次函数与二次函数的图象交点,抛物线的顶点为等内容,欢迎下载使用。
九年级数学下册第三十章二次函数必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、将二次函数y=2x2的图像先向左平移2个单位,再向上平移3个单位,得到的函数图像的表达式为( )
A.y=2(x+2)2+3 B.y=2(x-2)2+3 C.y=2(x+2)2-3 D.y=2(x-2)2-3
2、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A. B.
C. D.
3、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )
A. B.y≤2 C.y<2 D.y≤3
4、一次函数与二次函数的图象交点( )
A.只有一个 B.恰好有两个
C.可以有一个,也可以有两个 D.无交点
5、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个 B.3 个 C.4 个 D.5 个.
6、若点,都在二次函数的图象上,且,则的取值范围是( )
A. B. C. D.
7、对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+4x+c有两个相异的不动点x1,x2,且x1<3<x2,则c的取值范围是( )
A.c<﹣6 B.c<﹣18 C.c<﹣8 D.c<﹣11
8、已知二次函数的图象如图所示,并且关于x的一元二次方程有两个不相等的实数根,下列结论:①;②;③;④.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
9、抛物线的顶点为( )
A. B. C. D.
10、对于抛物线下列说法正确的是( )
A.开口向下 B.其最大值为-2 C.顶点坐标 D.与x轴有交点
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点P(m,n)在对称轴为x=1的函数的图像上,则m-n的最大值为____.
2、若抛物线与轴交于原点,则的值为 __.
3、已知二次函数,当自变量x分别取1、4、5时,对应的函数值分别为,,,则,,的大小关系是________(用“<”号连接).
4、已知二次函数y1=x2-2x+b的图象过点(-2,5),另有直线y2=5,则符合条件y1>y2的x的范围是________.
5、已知二次函数y=﹣x2+bx+c与一次函数y=mx+n的图象相交于点A(﹣2,4)和点B(6,﹣2),则不等式﹣x2+bx+c>mx+n的解集是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、阅读理解,并完成相应的问题.
如图,重庆轨道2号线是中国西部地区第一条城市轨道交通线路,也是中国第一条跨座式单轨线路,因其列车在李子坝站穿楼而过闻名全国.小军了解到列车从牛角沱站开往李子坝站时,在距离停车线256米处开始减速.他想知道列车从减速开始,经过多少秒停下来,以及最后一秒滑行的距离.为了解决这个问题,小军通过建立函数模型来描述列车离停车线的距离s(米)与滑行时间t(秒)的函数关系,再应用该函数解决相应的问题.
(1)建立模型
①收集数据:
r(秒)
0
4
8
12
16
20
24
……
s(米)
256
196
144
100
64
36
16
……
②建立平面直角坐标系为了观察s(米)与t(秒)的关系,建立如图所示的平面直角坐标系.
③描点连线:请在平面直角坐标系中将表中未描出的点补充完整,并用平滑的曲线依次连接.
④选择函数模型:观察这条曲线的形状,它可能是_______函数的图象.
⑤求函数解析式;
解:设,因为时,,所以,则.
请根据表格中的数据,求a,b的值.(请写出详细解答过程).
验证:把a,b的值代入中,并将其余几对值代入求出的解析式,发现它们_______满足该函数解析式.(填“都”或“不都”)
结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为__________.
(2)应用模型
列车从减速开始经过_______秒,列车停止;最后一秒钟,列车滑行的距离为_______米.
2、在平面直角坐标系中,抛物线与x轴交于,两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图1,点D是OC的中点,P是抛物线上位于第一象限的动点,连接PD,PB、BD,求面积的最大值及此时点P的坐标;
(3)如图2,将原抛物线水平向右平移,使点A落在点处,点M是原抛物线对称轴上任意一点,在平移后的新抛物线上确定一点N,使得以点B、C、M、N为顶点的四边形为平行四边形,直接写出所有符合条件的点N的坐标.
3、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若 ,求点P的坐标;
(3)连接AC,求 PAC面积的最大值及此时点P的坐标.
4、2022年北京冬奥会即将召开,敢起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴建立平而直角坐标系,图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点О正上方3米处的A点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离A处的水平距离为4米时离水平线的高度为7米.求抛物线的函数表达式(不要求写出自变量工的取值范围);
(2)在(1)的条件下.当运动员运动的水平距离为多少米时,运动员恰好落在小山坡的B处?
5、如图,在平面直角坐标系中,抛物线与x轴交于B,C两点(C在B的左侧),与y轴交于点A,已知,.
(1)求抛物线的表达式;
(2)若点Q是线段AC下方抛物线上一点,过点Q作QD垂直AC交AC于点D,求DQ的最大值及此时点Q的坐标;
(3)点E是线段AB上一点,且;将抛物线沿射线AB的方向平移,当抛物线恰好经过点E时,停止运动,已知点M是平移后抛物线对称轴上的动点,N是平面直角坐标系中一点,直接写出所有使得以点A,B,M,N为顶点的四边形是菱形的点N的坐标,并把求其中一个点N的坐标的过程写出来.
-参考答案-
一、单选题
1、A
【解析】
【分析】
按照“左加右减,上加下减”的规律,即可得出平移后抛物线的解析式.
【详解】
解:抛物线y=2x2先向左平移2个单位得到解析式:y=2(x+2)2,再向上平移3个单位得到抛物线的解析式为:y=2(x+2)2+3.
故选:A.
【点睛】
本题考查了二次函数图象与几何变换,掌握抛物线解析式的变化规律:左加右减,上加下减是解题的关键.
2、D
【解析】
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
3、A
【解析】
【分析】
根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案
【详解】
解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,
∴另一交点为
设抛物线解析式为,将点代入得
解得
抛物线解析式为
则顶点坐标为
当x>0时,函数值y的取值范围是
故选A
【点睛】
本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.
4、B
【解析】
【分析】
联立解析式得一元二次方程,利用判根公式判断方程的根,方程根的个数即为图象的交点个数.
【详解】
解:联立一次函数和二次函数的解析式可得:
整理得:
有两个不相等的实数根
与的图象交点有两个
故选:B.
【点睛】
本题考查了一元二次方程的根,图象的交点与方程根的关系.解题的关键在于正确求解.
5、C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
6、D
【解析】
【分析】
先求出抛物线的对称轴,再根据二次函数的性质,当点和在直线的右侧时;当点和在直线的两侧时,然后分别解两个不等式即可得到的范围.
【详解】
抛物线的对称轴为直线,
∵,,
当点和在直线的右侧,则,
解得,
当点和在直线的两侧,则,
解得,
综上所述,的范围为.
故选:D.
【点睛】
本题考查了二次函数图象上点的坐标特征,熟练掌握二次函数图象上点的坐标满足其解析式是解题的关键.
7、B
【解析】
【分析】
由题意得不动点的横纵坐标相等,即在直线y=x上,故二次函数与直线y=x有两个交点,且横坐标满足x1<3<x2,可以理解为x=3时,一次函数的值大于二次函数的值.
【详解】
解:由题意得:不动点在一次函数y=x图象上,
∴一次函数y=x与二次函数的图象有两个不同的交点,
∵两个不动点x1,x2满足x1<3<x2,
∴x=3时,一次函数的函数值大于二次函数的函数值,
∴3>32+4×3+c,
∴c<-18.
故选:B.
【点睛】
本题以新定义为背景,考查了二次函数图象和一次函数图象的交点与系数间的关系,本题亦可以转化为方程的解来解题.
8、B
【解析】
【分析】
根据二次函数图象的开口方向、对称轴位置、与x轴的交点坐标等知识,逐个判断即可.
【详解】
解:抛物线与x轴有两个不同交点,因此b2-4ac>0,故①是错误的;
由图象可知,当x=-1时,y=a-b+c>0,因此③是错误的;
由开口方向可得,a>0,对称轴在y轴右侧,a、b异号,因此b-2
因此④正确的,
综上所述,正确的有2个,
故选:B.
【点睛】
考查二次函数的图象和性质,掌握a、b、c的值决定抛物线的位置以及二次函数与一元二次方程的关系,是正确判断的前提.
9、B
【解析】
【分析】
根据抛物线的顶点式y=a(x-h)2+k可得顶点坐标是(h,k).
【详解】
解:∵y=2(x-1)2+3,
∴抛物线的顶点坐标为(1,3),
故选:B.
【点睛】
本题考查二次函数的性质,解题的关键是熟练掌握抛物线的顶点式y=a(x-h)2+k,顶点坐标是(h,k).
10、D
【解析】
【分析】
根据二次函数的性质对各选项分析判断即可得解.
【详解】
解:由y=(x-1)2-2,可知,a=1>0,则抛物线的开口向上,
∴A选项不正确;
由抛物线,可知其最小值为-2,∴B选项不正确;
由抛物线,可知其顶点坐标,∴C选项不正确;
在抛物线中,△=b²-4ac=8>0,与与x轴有交点,∴D选项正确;
故选:D.
【点睛】
本题考查了二次函数的性质,掌握开口方向,对称轴、顶点坐标以及与x轴的交点坐标的求法是解决问题的关键.
二、填空题
1、##0.25
【解析】
【分析】
根据题意,可以得到a的值,m和n的关系,然后将m、n作差,利用二次函数的性质,即可得到m−n的最大值,本题得以解决.
【详解】
解:∵二次函数y=x2+ax+2的对称轴为x=1,
∴,解得a=-2,
∴二次函数解析式为y=x2-2x+2,
∵点P(m,n)在二次函数y=x2-2x+2的图象上,
∴n=m2-2m+2,
∴m−n=m−(m2-2m+2)=-m2+3m-2=−(m−)2+,
∴当m=时,m−n取得最大值,此时m−n=,
故答案为:.
【点睛】
本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
2、-3
【解析】
【分析】
根据函数图象经过原点时,,,代入即可求出的值.
【详解】
解:抛物线与轴交于原点,
当时,,
,
,
故答案为:.
【点睛】
本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.
3、y1<y2<y3
【解析】
【分析】
利用二次函数图象上点的坐标特征可分别求出y1,y2,y3的值,结合a>0,即可得出a+c<4a+c<9a+c,即y1<y2<y3.
【详解】
解:当x=1时,y1=a(1-2)2+c=a+c;
当x=4时,y2=a(4-2)2+c=4a+c;
当x=5时,y3=a(5-2)2+c=9a+c.
∵a>0,
∴a+c<4a+c<9a+c,
∴y1<y2<y3.
故答案为:y1<y2<y3.
【点睛】
本题考查了二次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征,分别求出y1,y2,y3的值是解题的关键.
4、x4## x>4或x<-2
【解析】
【分析】
先根据抛物线经过点(-2,5),求出函数解析式,再求出抛物线的对称轴,根据函数的对称性,找到抛物线经过另一点(4,5),从而得出结论.
【详解】
解:∵二次函数y1=x2-2x+b的图象过点(-2,5),
∴5=(-2)2-2×(-2)+b,
解得:b=-3,
∴二次函数解析式y1=x2-2x-3,
∴抛物线开口向上,对称轴为x=-=1,
∴抛物线过点(4,5),
∴符合条件y1>y2的x的范围是x<-2或x>4.
故答案为:x<-2或x>4.
【点睛】
本题考查了二次函数与不等式(组),关键是对二次函数的图象与性质的掌握和应用.
5、
【解析】
【分析】
不等式﹣x2+bx+c>mx+n的解集是二次函数在一次函数的图象上方部分x的范围;结合图形,找出二次函数图象在一次函数上面的自变量的取值就是不等式的解集.
【详解】
解:如图,
∵两函数图象相交于点A(-2,4),B(6,-2),
∴不等式﹣x2+bx+c>mx+n的解集是.
故答案为:.
【点睛】
本题主要考查了二次函数与不等式的关系,解答该题时,要具备很强的读图能力.
三、解答题
1、 (1)二次, 都, s=
(2)32,0.25
【解析】
【分析】
(1)通过描点、连线,观察图形可知,图象可能是二次函数的函数的图象;将点(4,196),(8,144)代入s=at2+bt+256,得a、b的值,再将其余几对值代入求出的解析式,发现它们都满足该函数解析式,最后得到结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式;
(2)让s=0,可求出列车从减速开始到列车停止的时间,然后将t=31代入s=t2-16t+256,即可求最后一秒钟,列车滑行的距离.
(1)
解:描点连线如下图:
由这条曲线的形状可知,它可能是二次函数的函数的图象;
设s=at2+bt+c(a≠0),因为t=0时,s=256,所以c=256,则s=at2+bt+256,将点(4,196),(8,144)代入s=at2+bt+256,得:
,
解这个方程组得:,
∴s=t2-16t+256,
当t=12时,×122-16×12+256=100,
当t=16时,×162-16×16+256=64,
当t=20时,×202-16×20+256=36,
当t=24时,×242-16×24+256=16,
∴其余几对值代入求出的解析式,发现它们都满足该函数解析式,
∴结论:减速阶段列车离停车线的距离s(米)与减速时间t(秒)的函数关系式为s=t2-16t+256(t≥0);
(2)
∵列车停止,
∴s=0,
∴t2-16t+256=0,
解这个方程得:t=32,
∴列车从减速开始经过32秒,列车停止;
∴最后一秒钟时31秒,
当t=31时,×312-16×31+256=0.25,
∴最后一秒钟,列车滑行的距离为0.25米.
【点睛】
本题考查了二次函数的性质,二元一次方程组的解法、一元二次方程的解法,做题的关键是确定二次函数的解析式.
2、 (1)抛物线的解析式为:;
(2)面积的最大值为,此时;
(3)或时,以点B、C、M、N为顶点的四边形为平行四边形.
【解析】
【分析】
(1)将点A、点B的坐标代入抛物线解析式,解方程组即可确定;
(2)根据(1)及题干条件可得,,设直线BD的函数解析式为:,将点D、点B的坐标代入解析式确定直线解析式,过点P作轴,交BD于点F,设,则,可得线段PF长度,结合图形求三角形面积得到解析式,然后化为顶点式,即可确定面积最大值及此时x的值,最后代入点P坐标即可确定;
(3)原抛物线水平向右平移,使点A落在点处,相当于抛物线向右平移2个单位,求出平移后的解析式,然后设,,分两种情况进行讨论:①当BC为平行四边形的边时;②当BC为平行四边形的对角线时;分别利用平行四边形的性质:对角线互相平分求出中点坐标得出方程求解即可得.
(1)
解:将点A、点B的坐标代入抛物线解析式为:
,
解得:,
∴抛物线的解析式为:;
(2)
解:根据(1)可得:当时,,
∴点,
∵点D是OC的中点,
∴,
设直线BD的函数解析式为:,将点D、点B的坐标代入解析式为:
,
解得:,
∴直线BD的函数解析式为:,
过点P作轴,交BD于点F,
设,则,
∴,
∴
,
,
,
,
∴当时,∴取得最大值为,
当时,,
∴,
故面积的最大值为,此时;
(3)
解:,
原抛物线水平向右平移,使点A落在点处,相当于抛物线向右平移2个单位,
平移后的解析式为:,
点M是原抛物线对称轴上任意一点,,,
设,,
①当BC为平行四边形的边时,如图所示:
根据平行线的对角线互相平分,中点为同一个点,
∴线段BM的中点为:,线段CN的中点为:,
可得:,,
解得:,,
当时,,
,
∴,;
②当BC为平行四边形的对角线时,如图所示:
根据平行线的对角线互相平分,中点为同一个点,
∴线段BC的中点为:,线段MN的中点为:,
可得:,,
解得:,,
当时,,
,
∴,;
综上可得:或时,以点B、C、M、N为顶点的四边形为平行四边形.
【点睛】
题目主要考查利用待定系数法确定二次函数解析式,抛物线上动点面积问题,平行四边形的性质,坐标中两个点的中点坐标等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
3、 (1);
(2)P(,﹣2);
(3)面积的最大值为8,此时点P(﹣2,﹣5).
【解析】
【分析】
(1)由题意及抛物线解析式可得:,而OA=2OC=8OB,得出,,即可确定点A、B、C的坐标,利用交点式代入即可确定解析式;
(2)根据(1)中解析式可得抛物线的对称轴为,当时,点P、C的纵坐标相同,横坐标之和除以2为对称抽,即可求解;
(3)过点P作轴交AC于点H,设直线AC的解析式为:,将点、代入确定直线解析式,结合图象可得,与∆PHC底为同底,高的和为OA长度,代入三角形面积得出,据此即可得出面积的最大值及此时点P的坐标.
(1)
解:抛物线,则,
∴,
∵OA=2OC=8OB,
∴,,
∴点A、B、C的坐标分别为、、,
∴,
将代入可得-2=a0+40-12,
解得:,
∴y=x+4x-12=x2+72x-2,
故抛物线的表达式为:;
(2)
解:,
其中:,,,
∴抛物线的对称轴为,
∵,
∴点P、C的纵坐标相同,
∴根据函数的对称性得点;
(3)
解:过点P作轴交AC于点H,
设直线AC的解析式为:,
将点、代入可得:
0=-4k+b-2=b,
解得:,
直线AC的解析式为:,
∴,
∴,
,
=12×4×(-12x-2-x2-72x+2),
,
∵,
∴当时,,此时面积最大,
当时,
,
∴,
答:的面积最大为8,此时点.
【点睛】
题目主要考查利用待定系数法确定一次函数与二次函数解析式,二次函数图象的基本性质等,理解题意,结合图象作出相应辅助线,综合运用二次函数基本性质是解题关键.
4、 (1)
(2)运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处
【解析】
【分析】
(1)运用待定系数法求解即可;
(2)设运动员运动的水平距离为m米时,依题意列出方程求解即可.
(1)
由题意可知抛物线过点和,将其代人得:
,
解得: ,
∴抛物线的函数表达式为:
(2)
设运动员运动的水平距离为m米时,依题意得:
整理得:,
解得: (舍去),
故运动员运动的水平距离为12米时,运动员恰好落在小山坡的B处.
【点睛】
本题考查二次函数的基本性质及其应用,熟练掌握二次函数的基本性质,并能将实际问题与二次函数模型相结合是解决本题的关键.
5、 (1)
(2)DQ的最大值为,
(3)N点坐标为或或或,见解析
【解析】
【分析】
(1)根据在抛物线上,可得,再由,可得,即可求解;
(2)过点Q作轴交直线AC于点P,令 ,可得,从而得到,进而得到,,再求出直线AC解析式,然后设,则,可得,即可求解;
(3)先求出平移后的抛物线为.然后分四种情况讨论,即可求解.
(1)
解:∵在抛物线上,
∴,
∵
∴,
将代入中得,,
∴抛物线的表达式为:;
(2)
解:过点Q作轴交直线AC于点P,如图:
当 时,,
解得: ,
∴,即OC=4,
∵OA=4,
∴,
∴,
在Rt△PQD中,,
由、得直线AC解析式为:,
设,则,
∵
∴
∴
∴当时,DQ的最大值为,此时.
(3)
解:存在,N点坐标为或或或.
设平移后满足条件的抛物线为;
∵抛物线过点,∴
∴抛物线沿射线AB的方向平移,设抛物线沿直线平移,
∴抛物线与抛物线的的顶点均在直线上;
∴由直线过点得,,解得;
由直线过得,,则,
又∵,∴,
∴,或(因为对称轴在不满足沿射线AB平移,舍去)
∴,,平移后的抛物线为.
∴对称轴为y轴,
即点M在y轴上,
当四边形ABNM为菱形,点N在x轴的上方时,
∵,.
∴;
当四边形ABN1M1为菱形,点N在x轴的下方时,
∵,.
∴;
当四边形AB M2 N2为菱形时,点N2在x轴上,则A M2垂直平分B N2,
∴O N2=OB,
∴点N2;
当四边形A M3B N3为菱形,A M3=B M3,.
设O M3=a,则B M3=A M3=4-a,
∴ ,解得: ,
∴ ,
∴点N3;
综上所述,N点坐标为或或或.
【点睛】
本题主要考查了二次函数的图象和性质,与四边形的综合题,抛物线的平移,熟练掌握二次函数的图象和性质,菱形的性质是解题的关键.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试当堂检测题,共28页。试卷主要包含了若二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共35页。试卷主要包含了一次函数与二次函数的图象交点等内容,欢迎下载使用。
这是一份冀教版九年级下册第30章 二次函数综合与测试随堂练习题,共26页。试卷主要包含了抛物线,,的图象开口最大的是,二次函数y=ax2+bx+c等内容,欢迎下载使用。
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)