


初中数学第30章 二次函数综合与测试习题
展开
这是一份初中数学第30章 二次函数综合与测试习题,共33页。试卷主要包含了二次函数y=a+bx+c,抛物线y=42+3的顶点坐标是等内容,欢迎下载使用。
九年级数学下册第三十章二次函数同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,二次函数的图象经过点,其对称轴为直线,有下列结论:①;②;③;④;⑤若,是抛物线上两点,且,则实数的取值范围是.其中正确结论是( )
A.①③④ B.②④⑤ C.①③⑤ D.①③④⑤
2、2020年2月3日,随着南立交匝道最后一条交通线划线完毕,蒙山大道祊河桥迎来了南北东西方向全线通车,蒙山高架路“踏实落地”,市民从此可一路畅通.蒙山大道祊河桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A. B. C. D.
3、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
A.2 个 B.3 个 C.4 个 D.5 个.
4、二次函数y=ax2+bx+c的图像全部在x轴的上方,下列判断中正确的是( )
A.a<0,c<0 B.a<0,c>0 C.a>0,c<0 D.a>0,c>0
5、二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论:①﹣4ac>0;②abc<0;③4a+b=0,④4a-2b+c>0;其中正确结论的个数是( )
A.4 B.3 C.2 D.1
6、已知二次函数的部分图象如图所示,图象过点,对称轴为直线,下列结论错误的是( )
A. B. C. D.
7、抛物线y=4(2x﹣3)2+3的顶点坐标是( )
A.(,3) B.(4,3) C.(3,3) D.(﹣3,3)
8、二次函数的自变量与函数值的部分对应值如下表:
…
-3
-2
-1
0
1
…
…
-11
-3
1
1
-3
…
对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
A.①② B.③④ C.①③ D.①②④
9、如图,抛物线与轴交于点,对称轴为直线,则下列结论中正确的是( )
A.
B.当时,随的增大而增大
C.
D.是一元二次方程的一个根
10、在抛物线的图象上有三个点,,,则、、的大小关系为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是一座截面为抛物线的拱形桥,当拱顶离水面3米高时,水面宽l为6米,则当水面下降3米时,水面宽度为_______米.(结果保留根号)
2、已知抛物线与轴交于A、B两点,对称轴与抛物线交于C,与轴交于点D,圆C的半径为1.8,G为圆C上一动点,P为AG的中点,则DP的最大值为_________.
3、若关于的函数与轴只有一个交点,则实数的值为____.
4、将二次函数的图象向左平移1个单位,再向上平移1个单位,得到的新图象函数的表达式为______.
5、若抛物线与轴交于原点,则的值为 __.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线AB与抛物线y=x2+bx+c交于点A(﹣4,0),B(2,6),与y轴交于点C,且OA=OC,点D为线段AB上的一点,连结OD,OB.
(1)求抛物线的解析式;
(2)若OD将△AOB的面积分成1:2的两部分,求点D的坐标;
(3)在坐标平面内是否存在点P,使以点A,O,B,P为顶点四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.
2、如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线,如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m.
(1)建立适当平面直角坐标系,确定抛物线解析式;
(2)求水流的落地点D到水枪底部B的距离.
3、在平面直角坐标系xOy中的图形W与图形N,如果图形W与图形N有两个交点,我们则称图形W与图形N互为“友好图形”.
(1)已知A(-1,1),B(2,1)则下列图形中与线段AB互为“友好图形”的是 ;
①抛物线y=x2;
②双曲线;
③以O为圆心1为半径的圆.
(2)已知:图形W为以O为圆心,1为半径的圆,图形N为直线y=x+b,若图形W与图形N互为“友好图形”,求b的取值范围.
(3)如图,已知,,,图形W是以(t,0)为圆心,1为半径的圆,若图形W与△ABC互为“友好图形”,直接写出t的取值范围.
4、 “互联网+”时代,网上购物备受消费者青睐,某网店专售一款电子玩具,其成本为每件100元,当售价为每件160元时,每月可销售200件.为了吸引更多买家,该网店采取降价措施,据市场调查反映:销售单价每降低1元,则每月可多销售5件,设每件电子玩具的售价为x元(x为正整数),每月销售量为y件.
(1)直接写出y与x之间的函数关系式;
(2)设该网店每月获得的利润为w元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主决定每月从利润中捐出500元资助贫困学生,为了保证捐款后每月利润不低于11500元,且让消费者得到最大的实惠,该如何确定该电子玩具的价格?
5、如图,在平面直角坐标系中,抛物线y=ax2﹣x﹣4与x轴交于点A(4,0),与y轴交于点C.点B(12,0),联结BC.
(1)求该抛物线解析式;
(2)求∠ACB的正弦值;
(3)如图,点D为抛物线上一点,直线AD交y轴于点E,交线段BC于点F.若△ECA∽△EFC,求点D的坐标.
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据开口方向,对称轴,以及与轴负半轴的交点位置判断的符号即可判断①,根据二次函数图象的对称性可知时的函数值与的函数值相等,进而可得,即可判断②,根据对称轴为以及顶点坐标公式即可判断③,根据二次函数图象与轴有两个交点,则,即可判断④,根据对称性可得时的函数值与时的函数值相等,进而根据抛物线的开口方向以及,即可判断,根据顶点位置的函数值最小,进而即可判断⑤
【详解】
解:∵抛物线的开口朝上,则,对称轴,可得,根据抛物线与轴交于负半轴,则
∴
故①正确;
∵二次函数的图象经过点,
则当时,
对称轴为直线,则时的函数值与的函数值相等,
时,
即
故②不正确
对称轴为直线,
∴,即
故③正确;
∵二次函数图象与轴有两个交点,则
即
故④错误;
对称轴为直线,则时的函数值与的函数值相等,
,是抛物线上两点,且,抛物线开口向上,
故⑤正确
故正确的是①③⑤
故选C
【点睛】
本题考查了二次函数图象的性质以及与各系数之间的关系,二次函数与一元一次不等式,根据图象判断方程的根的情况,二次函数的对称性,掌握二次根式图象的性质是解题的关键.
2、B
【解析】
【分析】
直接利用图象设出抛物线解析式,进而得出答案.
【详解】
∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,
∴设抛物线解析式为y=ax2,点B(45,-78),
∴-78=452a,
解得:a=,
∴此抛物线钢拱的函数表达式为,
故选:B.
【点睛】
本题主要考查了二次函数的应用,正确设出抛物线解析式是解题关键.
3、C
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
4、D
【解析】
【分析】
由抛物线全部在轴的上方,即可得出抛物线与轴无交点且,进而即可得出、,此题得解.
【详解】
解:二次函数的图象全部在轴的上方,
,,
,
,
.
,.
故选:D.
【点睛】
本题考查了二次函数的性质,解题的关键是牢记二次函数的性质.
5、B
【解析】
【分析】
看抛物线与x轴交点个数,判定判别式的符号;根据抛物线开口方向,对称轴与x轴的交点位置,与y轴的交点位置,确定a,b,c的符号;根据对称轴,确定a,b之间的关系;当x= -2时,利用图像,观察直线x=-2与抛物线的交点位置,判定函数值的正负即可.
【详解】
∵抛物线与x轴有两个不同的交点,
∴﹣4ac>0;
故①正确;
∵抛物线开口向下,与y轴交于正半轴,>0,
∴a<0,b>0, c>0,
∴abc<0;
故②正确;
∵,
∴4a+b=0,
故③正确;
x= -2时,y=4a-2b+c,
根据函数的增减性,得4a-2b+c<0;
故④错误.
故选B.
【点睛】
本题考查了抛物线的图像与各项系数的关系,抛物线与x轴的交点,对称性,增减性,熟练掌握抛物线的性质是解题的关键.
6、B
【解析】
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:A、函数的对称轴在y轴右侧,则ab<0,而c>0,故abc<0,故A正确,不符合题意;
B、函数的对称轴为:x=−=1,故2a+b=0,即,图象与x轴交于点A(−1,0),
故当时,,即,故B错误,符合题意;
C、图象与x轴交于点A(−1,0),其对称轴为直线x=1,则图象与x轴另外一个交点坐标为:(3,0),故当x=2时,y=4a+2b+c>0,故C正确,不符合题意;
D、图象与x轴另外一个交点坐标为:(3,0),即x=3时,y=9a+3b+c=0,正确,不符合题意;
故选:B.
【点睛】
本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.
7、A
【解析】
【分析】
根据顶点式的顶点坐标为求解即可
【详解】
解:抛物线的顶点坐标是
故选A
【点睛】
本题考查了二次函数顶点式的顶点坐标为,掌握顶点式求顶点坐标是解题的关键.
8、A
【解析】
【分析】
根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
【详解】
解:把(-1,1),(1,-3),(-2,-3)代入,得
解得,
∴二次函数式为:
∵
∴二次函数的图像开口向下,故①正确;
∵
∴对称轴为直线
∴当时,随的增大而减小,故②正确;
当时,二次函数的最大值是,故③错误;
若,是二次函数图像与轴交点的横坐标,则,故④错误
∴正确的是①②
故答案为①②
【点睛】
本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
9、D
【解析】
【分析】
根据二次函数图象的开口方向向下可得是负数,对称轴位于轴的右侧可得、异号;与轴的交点在正半轴可得是正数,根据二次函数的增减性可得选项错误,根据抛物线的对称轴结合与轴的一个交点的坐标可以求出与轴的另一交点坐标,也就是一元二次方程的根,从而得解.
【详解】
解:、根据图象,二次函数开口方向向下,则,对称轴位于轴的右侧可得、异号,即,故本选项结论错误;
B、当时,随的增大而减小,故本选项结论错误;
C、根据图象,抛物线与轴的交点在正半轴,则,故本选项结论错误;
D、抛物线与轴的一个交点坐标是,对称轴是直线,
设另一交点为,
,
,
另一交点坐标是,
是一元二次方程的一个根,
故本选项结论正确.
故选:D.
【点睛】
本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.
10、C
【解析】
【分析】
把三个点,,的横坐标代入解析式,然后比较函数值大小即可.
【详解】
解:把三个点,,的横坐标代入解析式得,
;;;
所以,,
故选:C.
【点睛】
本题考查了二次函数的性质,解题关键是求出函数值,再比较大小.
二、填空题
1、6
【解析】
【分析】
建立平面直角坐标系,根据题意设出抛物线解析式,利用待定系数法求出解析式,根据题意计算即可.
【详解】
建立平面直角坐标系如图:
则抛物线顶点C坐标为(0,3),
设抛物线解析式y=ax2+3,
将A点坐标(﹣3,0)代入,可得:0=9a+3,
解得:a=﹣,
故抛物线解析式为y=﹣x2+3,
当水面下降3米,通过抛物线在图上的观察可转化为:
当y=﹣3时,对应的抛物线上两点之间的距离,
也就是直线y=﹣3与抛物线相交的两点之间的距离,
将y=﹣3代入抛物线解析式得出:﹣3=﹣x2+3,
解得:x=±,
所以水面宽度为米,
故答案为:.
【点睛】
本题考查的是二次函数的应用,掌握二次函数的性质、正确建立平面直角坐标系是解题的关键.
2、
【解析】
【分析】
如图,连接BG.利用三角形的中位线定理证明DP=BG,求出BG的最大值,即可解决问题.
【详解】
解:如图,连接BG.
∵AP=PG,AD=DB,
∴DP=BG,
∴当BG的值最大时,DP的值最大,
∵,
∴C(5,),B(9,0),
∴BC==,
当点G在BC的延长线上时,BG的值最大,最大值=+,
∴DP的最大值为,
故答案为:.
【点睛】
本题考查二次函数图象上的点的坐标特征,三角形中位线定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
3、1
【解析】
【分析】
对于二次函数解析式,令得到关于的一元二次方程,由抛物线与轴只有一个交点,得到根的判别式等于0,即可求出的值.
【详解】
解:对于二次函数,
令,得到,
二次函数的图象与轴只有一个交点,
△,
解得:,
故答案为:1.
【点睛】
此题考查了抛物线与轴的交点,解题的关键是熟练掌握二次函数的性质.
4、
【解析】
【分析】
根据二次函数图象平移规律“左加右减,上加下减”解答即可.
【详解】
解:将二次函数的图像向左平移1个单位,再向上平移1个单位,得到的新图像函数的表达式为,
故答案为:.
【点睛】
本题考查二次函数的平移,熟练掌握二次函数图象平移规律是解答的关键.
5、-3
【解析】
【分析】
根据函数图象经过原点时,,,代入即可求出的值.
【详解】
解:抛物线与轴交于原点,
当时,,
,
,
故答案为:.
【点睛】
本题考查了二次函数的性质,掌握函数图象经过原点,即当时,是解决问题的关键.
三、解答题
1、 (1)
(2)(-2,2)或(0,4)
(3)存在,点P的坐标为(-2,6)或(6,6)或(-6,-6).
【解析】
【分析】
(1)根据待定系数法,将A(−4,0)、B(2,6)代入,计算即可;
(2)先确定点A点C坐标,再运用待定系数法先求出直线AB的解析式,设点D的坐标为(m,m+4),然后根据OD将△AOB的面积分成1:2的两部分计算即可;
(3)设点P的坐标为(xp,yp),分3种情况分析解答即可.
(1)
解:将A(−4,0)、B(2,6)代入可得:
,解得:,
∴抛物线的解析式为:;
(2)
解:∵ A点坐标为(-4,0),OA=OC
∴C点坐标为(0,4)
设直线AB的解析式为:,则
,解得:,
∴直线AB的解析式为:,
设点D的坐标为(m,m+4),
∵OD将△AOB的面积分成1:2的两部,即或,
∴或,解得:或m=0
∴点D的坐标为(-2,2)或(0,4);
(3)
解:存在;
设点P的坐标为(xp,yp),
①当四边形AOBP是平行四边形时,p1在第二象限时,
轴,,
∵B(2,6),
∴点P的坐标为(-2,6);
②当四边形AOPB是平行四边形时,p2在第一象限时,
点P的横坐标为2+4=6,点P的,纵坐标坐标为6,
点P的坐标为(6,6);
③当四边形APOB是平行四边形时,p3在第三象限时,
,,
∴,,
即,,
解得:,,
此时点P的坐标为(-6,-6);
综上,存在满足条件的点P的坐标为(-2,6)或(6,6)或(-6,-6).
【点睛】
本题属于二次函数与一次函数综合题,主要考查了运用待定系数法求解析式、三角形面积、平行四边形等知识点,正确求出二次函数、一次函数的解析式并掌握分类讨论思想成为解答本题的关键.
2、 (1)图解析,y=﹣1.6(x﹣1)2+3.6
(2)水流的落地点D到水枪底部B的距离为2.5m.
【解析】
【分析】
(1)依题意,建立直角坐标系(见详解1),依据二次函数的顶点式进行求解即可;
(2)结合(1)中的解析式,将距离问题转变为二次函数与横坐标轴的交点问题,求解;
(1)
由题知,如图,以BD所在直线为x轴、AB所在直线为y轴建立直角坐标系,
由题意知,抛物线的顶点为、点;
设抛物线的解析式为,
将点代入,得:,
则抛物线的解析式为,
(2)
结合(1),可知水流的落地点D到水枪底部B的距离转换为,与横坐标的交点问题;
∴ 当y=0时,有,
解得:或(舍),
∴,
答:水流的落地点D到水枪底部B的距离为2.5m.
【点睛】
本题主要考查二次函数解析式的求解及其实际应用,关键在熟练应用解析结合实际问题;
3、 (1)①
(2)b的取值范围是
(3)t的取值范围是或.
【解析】
【分析】
(1)根据“友好图形”分别作出抛物线,双曲线,以及圆,根据定义进行判断即可;
(2)作⊙O的两条切线,过点O作OQ⊥KL,求得的值,根据对称性即可求得的取值范围;
(3)如图5,过点E作EQ⊥AC于Q,当图形W是⊙D时,⊙D与AB相切,此时,当图形W是⊙E时,⊙E与AB相切,此时,根据的坐标可得,BAy轴,BCx轴,可得出⊙E与AC相离,进而可得图形W与△ABC有两个交点时,t的取值是,如图6,当⊙E'与AC相切时,设切点为G,连接E'G,同理得,当⊙D'与AC相切时,设切点为H,连接D'H,同理得,t的取值是.综合2种情形即可得t的取值范围
(1)
①如图1,当y=1时,x2=1,
∴x=±1,∴抛物线y=x2与线段AB有两个交点为(1,1)和(-1,1),
∴抛物线y=x2与线段AB互为“友好图形”;
②如图2,当y=1时,,
∴x=1,
∴双曲线与线段AB有1个交点为(1,1),
∴抛物线与线段AB不是互为“友好图形”.
③如图3,以O为圆心1为半径的圆与线段AB有1个交点为(0,1),
∴以O为圆心1为半径的圆与线段AB不是互为“友好图形”;
故答案为:①;
(2)
如图4,作⊙O的两条切线,这两条切线与直线y=kx+b平行,过点O作OQ⊥KL,
∵OQ=1,△OQK是等腰直角三角形,
∴,
∴b的取值范围是.
(3)
如图5,过点E作EQ⊥AC于Q,
∵,,图形W是以(t,0)为圆心,1为半径的圆,
当图形W是⊙D时,⊙D与AB相切,此时,
当图形W是⊙E时,⊙E与AB相切,此时,
∵,,,
∴BAy轴,BCx轴,
∴∠ABC=90°,
∵AB=4,,
∴AC=8,
∴∠C=30°,
∴∠AFD=∠C=30°,
∴,
∴,
∴,
∴⊙E与AC相离,
∴图形W与△ABC有两个交点时,t的取值是.
如图6,当⊙E'与AC相切时,设切点为G,连接E'G,
同理得,
∴,
当⊙D'与AC相切时,设切点为H,连接D'H,同理得,
∴,
∴图形W与△ABC有两个交点时,t的取值是.
综上,若图形W与△ABC互为“友好图形”,t的取值范围是或.
【点睛】
本题考查了新定义,抛物线的性质,反比例函数图象的性质,圆的切线的性质,含30度角的直角三角形的性质,直线与圆的位置关系,理解题意,熟练掌握直线与圆的位置关系是解题的关键.
4、 (1)y= -5x+1000
(2)当销售单价降低10元时,每月获得的利润最大,最大利润是12500元;
(3)140元
【解析】
【分析】
(1)根据总件数=基础件数+增加件数=200+5(160-x),列出关系式即可;
(2)根据总利润=单件利润×销售件数,构造二次函数,配方法求最值即可;
(3)先根据题意,构造出符合题意的不等式,把不等式转化为一元二次方程,求得两个根,根据抛物线的性质,确定不等式的解集,结合题意,确定价格即可.
(1)
∵售价为每件160元时,每月可销售200件,销售单价每降低1元,则每月可多销售5件,
∴y=200+5(160-x)=-5x+1000.
(2)
根据题意,得w=(x-100)(-5x+1000)
= ,
∵抛物线开口向下,
∴当x=150时,w有最大值,且为12500,
此时应降价160-150=10元,
故当销售单价降低10元时,每月获得的利润最大,最大利润是12500元.
(3)
根据题意,得-500≥11500,
当-500=11500时,
解得,,
∵抛物线w= 开口向下,
∴-500≥11500的解集为140≤x≤160,
∴让消费者得到最大的实惠,该如何确定该电子玩具的价格x=140元.
【点睛】
本题考查了销售数量与价格的关系,二次函数解决利润问题,二次函数图像与不等式解集的关系,一元二次方程的解法,熟练掌握二次函数的构造方法和性质是解题的关键.
5、 (1)抛物线的解析式为
(2)∠ACB的正弦值为
(3)点D的坐标为
【解析】
【分析】
(1)将A点坐标代入,求出的值,然后回代抛物线的解析式即可;
(2)根据抛物线解析式求出点的坐标,知是等腰直角三角形,求出的值,如图,延长,作,垂足为,为等腰直角三角形,求出的值,在中,,由勾股定理知,,将线段值代入求解即可;
(3)由可知,,,在中,,解得的值,得到点坐标,设过两点的直线解析式为,将两点坐标代入求得解析式,然后与抛物线解析式联立求出D点坐标即可;
(1)
解:将代入中得
解得
∴抛物线的解析式为: .
(2)
解:将代入解得
∴点坐标为
∵
∴
∴是等腰直角三角形
∴
∴
∵B点坐标为
∴
如图,延长,作,垂足为
∴
∴
∴为等腰直角三角形
∴
在中,,由勾股定理知
∴
∴的正弦值为.
(3)
解:∵
∴
∵,
∴
∴
∴在中,
∴解得
∴点坐标为
∴设过两点的直线解析式为
将两点坐标代入解析式得
解得
∴过两点的直线解析式为
联立一次函数解析式与抛物线解析式得
消得
解得或(舍去)
∴
∴D点坐标为.
【点睛】
本题考查了二次函数解析式,等腰直角三角形的判定与性质,正弦值,勾股定理,三角形相似,一次函数与二次函数的交点坐标等知识.解题的关键在于对知识的综合灵活运用.
相关试卷
这是一份冀教版九年级下册第30章 二次函数综合与测试达标测试,共26页。试卷主要包含了二次函数的最大值是等内容,欢迎下载使用。
这是一份2020-2021学年第30章 二次函数综合与测试课后复习题,共24页。试卷主要包含了二次函数图像的顶点坐标是,已知点,,都在函数的图象上,则,抛物线y=﹣2,若二次函数y=a等内容,欢迎下载使用。
这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试同步训练题,共28页。试卷主要包含了下列函数中,二次函数是,二次函数y=ax2﹣4ax+c等内容,欢迎下载使用。
