冀教版九年级下册第30章 二次函数综合与测试练习
展开九年级数学下册第三十章二次函数章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、二次函数y=ax2+bx+c的部分图象如图所示,当x>0时,函数值y的取值范围是( )
A. B.y≤2 C.y<2 D.y≤3
2、抛物线y=x2+4x+5的顶点坐标是( )
A.(2,5) B.(2,1) C.(﹣2,5) D.(﹣2,1)
3、二次函数的自变量与函数值的部分对应值如下表:
…
-3
-2
-1
0
1
…
…
-11
-3
1
1
-3
…
对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
A.①② B.③④ C.①③ D.①②④
4、已知抛物线y=mx2+4mx+m﹣2(m≠0),点A(x1,y1),B(3,y2)在该抛物线上,且y1<y2.给出下列结论①抛物线的对称轴为直线x=﹣2;②当m>0时,抛物线与x轴没有交点;③当m>0时,﹣7<x1<3; ④当m<0时,x1<﹣7或x1>3;其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
5、如图,在中,,,,是边上一动点,沿的路径移动,过点作,垂足为.设,的面积为,则下列能大致反映与函数关系的图象是( )
A. B.
C. D.
6、若点A(-1,y1),B(0,y2),C(1,y3)都在二次函数y=2x2+x-1的图象上,则y1,y2,y3的大小关系是( )
A.y1<y2><y3 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y1
7、如图,二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的一个交点坐标为(﹣1,0),对称轴为直线x=1.下列结论:①x>0时,y随x的增大而增大;②2a+b=0;③4a+2b+c<0;④关于x的方程ax2+bx+c+a=0有两个不相等的实数根.其中,所有正确结论的序号为( )
A.②③ B.②④ C.①②③ D.②③④
8、如图,若二次函敞的图象过点,且与x轴交点横坐标分别为,,其中,.得出结论:①;②;③;④.上述结论正确的有( )个.
A.1 B.2 C.3 D.4
9、同一直角坐标系中,函数和(是常数,且)的图象可能是( )
A. B.
C. D.
10、下列函数中,二次函数是( )
A.y=﹣3x+5 B.y=x(4x﹣3)
C.y=2(x+4)2﹣2x2 D.y=
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
2、已知点A(﹣7,m)、B(﹣5,n)都在二次函数y=﹣x2+4的图像上,那么m、n的大小关系是:m_____n.(填“>”、“=”或“<”)
3、如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(a、k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x轴,与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB与线段CD的长度和为_____.
4、已知抛物线,点在抛物线上,则的最小值是______.
5、当k-2≤x≤k时,函数y=x2-4x+4(k为常数)的最小值为4,则k的值是____.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,抛物线交轴于点,点,(点在点的左侧),点是抛物线上一点.
(1)若,时,用含的式子表示;
(2)若,,,的外接圆为,求点的坐标和弧的长;
(3)在(1)的条件下,若有最小值,求此时的抛物线解折式
2、借鉴我们已有研究函数的经验,探索函数y=|x2﹣2x﹣3|的图像与性质,研究过程如下,请补充完整.
(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:
x
…
﹣2
﹣1
0
1
2
3
4
…
y
…
m
0
3
n
3
0
5
…
其中,m= ,n= ;
(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出函数图像;
(3)观察函数图像:
①写出该函数的一条性质 ;
②已知函数y=x+4的图像如图所示根据函数图像,直接写出不等式x+4<|x2﹣2x﹣3|的解集.(近似值保留一位小数,误差不超过0.2)
3、已知二次函数y=x2+2x.
(1)写出该二次函数图象的对称轴.
(2)已知该函数图象经过A(x1,y1),B(x2,y2)两个不同的点.
①当x1=3n+4,x2=2n﹣1,且y1=y2时,求n的值.
②当x1>﹣1,x2>﹣1时,求证:(x1﹣x2)(y1﹣y2)>0
4、如图,抛物线y=ax2+bx+4经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点是拋物线在轴上方,对称轴右侧上的一个动点,设点D的横坐标为m.连接AC,BC,,DC.
(1)求抛物线的函数表达式;
(2)当△BCD的面积与△AOC的面积和为时,求m的值;
(3)在(2)的条件下,若点M是x轴上一动点,点是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,为顶点的四边形是平行四边形.请直接写出点M的坐标;若不存在,请说明理由.
5、习近平总书记曾强调“利用互联网拓宽销售渠道,多渠道解决农产品卖难问题.” 2021年黑龙江省粮食生产再获丰收,某村通过直播带货对产出的生态米进行销售.每袋成本为40元,物价部门规定每袋售价不得高于55元.市场调查发现,若每袋以45元的价格销售,平均每天销售105袋,而销售价每涨价1元,平均每天就可以少售出3袋.
(1)求该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式;
(2)若每日销售利润达到900元,售价为多少元?
(3)当每袋大米的销售价为多少元时,可以获得最大利润?最大利润是多少?
-参考答案-
一、单选题
1、A
【解析】
【分析】
根据待定系数求解析式,进而求得顶点坐标,即的最大值,进而即可求得答案
【详解】
解:∵二次函数y=ax2+bx+c图象的对称轴为,与轴的交点为,与轴的一个交点为,
∴另一交点为
设抛物线解析式为,将点代入得
解得
抛物线解析式为
则顶点坐标为
当x>0时,函数值y的取值范围是
故选A
【点睛】
本题考查了待定系数法求抛物线解析式,化为顶点式是解题的关键.
2、D
【解析】
【分析】
利用顶点公式(﹣,),进行解题.
【详解】
解:∵抛物线y=x2+4x+5
∴x=﹣=﹣=﹣2,y==1
∴顶点为(﹣2,1)
故选:D.
【点睛】
此题主要考查二次函数的顶点坐标,解题的关键是熟知二次函数的顶点公式为(﹣,).
3、A
【解析】
【分析】
根据待定系数法确定函数解析式,再根据函数的图象与性质求解即可.
【详解】
解:把(-1,1),(1,-3),(-2,-3)代入,得
解得,
∴二次函数式为:
∵
∴二次函数的图像开口向下,故①正确;
∵
∴对称轴为直线
∴当时,随的增大而减小,故②正确;
当时,二次函数的最大值是,故③错误;
若,是二次函数图像与轴交点的横坐标,则,故④错误
∴正确的是①②
故答案为①②
【点睛】
本题考查二次函数的性质、二次函数的最值、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.
4、C
【解析】
【分析】
利用抛物线的对称轴公式可判断①,计算 结合 可判断②,再分别画出符合③,④的图象,结合图象可判断③与④,从而可得答案.
【详解】
解: 抛物线y=mx2+4mx+m﹣2(m≠0),
抛物线的对称轴为: 故①符合题意;
当时,
所以抛物线与轴有两个交点,故②不符合题意;
当时,抛物线的开口向上,如图,
则关于的对称点为: 而
故③符合题意;
当时,抛物线的开口向下,如图,
同理可得:由
则或 故④符合题意,
综上:符合题意的有:①③④
故选:C
【点睛】
本题考查的是抛物线的对称轴方程,抛物线与轴的交点的情况,二次函数的图象与性质,掌握“利用数形结合的方法求解符合条件的自变量的取值范围”是解本题的关键.
5、D
【解析】
【分析】
分两种情况分类讨论:当0≤x≤6.4时,过C点作CH⊥AB于H,利用△ADE∽△ACB得出y与x的函数关系的图象为开口向上的抛物线的一部分;当6.4<x≤10时,利用△BDE∽△BCA得出y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.
【详解】
解:∵,,,
∴BC=,
过CA点作CH⊥AB于H,
∴∠ADE=∠ACB=90°,
∵,
∴CH=4.8,
∴AH=,
当0≤x≤6.4时,如图1,
∵∠A=∠A,∠ADE=∠ACB=90°,
∴△ADE∽△ACB,
∴,即,解得:x=,
∴y=•x•=x2;
当6.4<x≤10时,如图2,
∵∠B=∠B,∠BDE=∠ACB=90°,
∴△BDE∽△BCA,
∴,
即,解得:x=,
∴y=•x•=;
故选:D.
【点睛】
本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出y与x的函数关系式.
6、B
【解析】
【分析】
由题意可知函数图象的对称轴、增减性;根据对称将A转化到对称轴的右侧,得到的坐标表示,然后比较三点横坐标的大小,进而判断三点纵坐标的大小即可.
【详解】
解:由知该函数图象开口向上,对称轴是直线,在对称轴的右侧,y随x的增加而增大
∴点A对称的点的坐标为
∵
∴
故选B.
【点睛】
本题考查了二次函数的图象与性质.解题的关键在于掌握该函数图象与性质.
7、D
【解析】
【分析】
根据二次函数的图象及性质即可判断.
【详解】
解:由函数图象可知,抛物线开口向上,
∴a>0,
∵对称轴为直线x=1,抛物线与x轴的一个交点坐标为(﹣1,0),
∴抛物线与x轴另一个交点坐标为(3,0),
∴当x>1时,y随x的增大而增大,故①错误;
∵﹣=1,
∴b=﹣2a,
∴2a+b=0,故②正确;
当x=2时,y=4a+2b+c<0,故③正确;
当x=﹣1时,y=a﹣b+c=3a+c=0,
∴c=﹣3a,
∴﹣a>c,
∴直线y=﹣a与抛物线y=ax2+x+c有2个交点,
∴关于x的方程ax2+bx+c=﹣a有两个不相等的实数根,
即关于a的方程ax2+bx+c+a=0有两个不相等的实数根,故④正确;
正确的有②③④,
故选:D.
【点睛】
本题考查二次函数图象与系数的关系,解题的关键是熟练掌握二次函数的性质,正确理解二次函数与方程的关系,本题属于中等题型.
8、C
【解析】
【分析】
由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,可判断①,二次函敞的图象过点,结合图象可得:在抛物线上,再求解抛物线的对称轴可判断②,二次函敞的顶点坐标为:可判断③,先利用时的函数值求解的取值范围,从而可判断④,从而可得答案.
【详解】
解:由二次函数的图象开口向上,轴对称在轴的左侧,图象与轴交于负半轴,
故①符合题意;
二次函敞的图象过点,结合图象可得:
在抛物线上,
抛物线的对称轴为:
故②符合题意;
二次函敞的顶点坐标为:结合图象可得:
而
故③不符合题意;
当时,
又由图象可得:时,
解得:
故④符合题意;
综上:符合题意的有:①②④
故选C
【点睛】
本题考查的是二次函数的图象与性质,掌握“利用二次函数的图象与性质判断代数式的符号”是解本题的关键.
9、D
【解析】
【分析】
根据一次函数,二次函数的图象与性质逐一分析两个解析式中的的符号,再判断即可.
【详解】
解:选项A:由的图象可得:
由的图象可得:则 故A不符合题意;
选项B:由的图象可得:
由的图象可得:则
而抛物线的对称轴为: 则 故B不符合题意;
选项C:由的图象可得:
由的图象可得:则 故C不符合题意;
选项D:由的图象可得:
由的图象可得:则
而抛物线的对称轴为: 则 故D符合题意;
故选D
【点睛】
本题考查的是一次函数与二次函数的图象共存问题,掌握“一次函数与二次函数的图象与性质”是解本题的关键.
10、B
【解析】
【分析】
根据二次函数的定义逐个判断即可.
【详解】
解:A.函数是一次函数,不是二次函数,故本选项不符合题意;
B.是二次函数,故本选项符合题意;
C.是一次函数,不是二次函数,故本选项不符合题意;
D.不是二次函数,故本选项不符合题意;
故选:B.
【点睛】
本题考查了二次函数的定义,解题的关键是掌握:形如、、为常数,的函数,叫二次函数.
二、填空题
1、
【解析】
【分析】
设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.
【详解】
解:设抛物线与x轴的两个交点的横坐标为
是的两根,且
两个交点之间的距离为4,
解得: 经检验:是原方程的根且符合题意,
故答案为:
【点睛】
本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.
2、
【解析】
【分析】
先利用二次函数的性质得到抛物线的对称轴为轴,然后根据二次函数的性质解决问题.
【详解】
解:二次函数可知,抛物线开口向下,抛物线的对称轴为轴,
所以当时,随的增大而增大,
,
,
故答案为:.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是掌握二次函数图象上点的坐标满足其解析式,也考查了二次函数的性质.
3、5
【解析】
【分析】
先求出抛物线y= a(x-1)2+k(a、k为常数)的对称轴,然后根据A和B、C和D均关于对称轴直线x=1对称,分别求出B和D点的坐标,即可求出OB和CD的长.
【详解】
解:∵抛物线y=a(x-1)2+k(a、k为常数),
∴对称轴为直线x=1,
∵点A和点B关于直线x=1对称,且点A(-1,0),
∴点B(3,0),
∴OB=3,
∵C点和D点关于x=1对称,且点C(0,a+k),
∴点D(2,a+k),
∴CD=2,
∴线段OB与线段CD的长度和为5,
故答案为5.
【点睛】
本题主要考查了二次函数的图象与性质,二次函数与与坐标轴交点的知识,解答本题的关键求出抛物线y=a(x-1)2+k(a、k为常数)的对称轴为x=1,此题难度不大.
4、1
【解析】
【分析】
把点代入得,再代入进行配方求解即可.
【详解】
解:∵点在抛物线上,
∴
∴
∵
∴的最小值是1,
故答案为:1
【点睛】
本题主要考查了二次函数的性质,能用含a的代数式表示出2a+b是解答本题的关键.
5、0或6##6或0
【解析】
【分析】
先求出函数的顶点坐标,再根据题意分情况讨论即可求解.
【详解】
∵y=x2-4x+4=(x-2)2
∴顶点坐标为(2,0)
∴当k≤2时,x=k时,函数y=x2-4x+4的最小值为4
故k2-4k+4=4
解得k=0或k=4(舍去)
当k-2≥2时,x= k-2时,函数y=x2-4x+4的最小值为4
故(k-2)2-4(k-2)+4=4
解得k=6或k=2(舍去)
故答案为6或0.
【点睛】
此题主要考查二次函数的图象与性质,解题的关键是根据题意分情况讨论.
三、解答题
1、 (1)
(2)E点坐标为,弧长为
(3)
【解析】
【分析】
(1)将,代入,计算求解即可;
(2)将与代入,得到,然后将解析式因式分解,得到点坐标分别为;如图,在直角坐标系中作,连接;点为中点,坐标为;点为中点,坐标为,,,有,,,,,得的值,进而可求出点坐标;,知,,AE= ,根据求解即可;
(3),知,, 最小时,有,解得值,故可得值,进而可得出抛物线的解析式.
(1)
解:将与代入
得
∴用含的式子表示为.
(2)
解:将与代入
得
∴
∴点坐标分别为
如图,作,连接
∴,
∴点为中点,坐标为即;点为中点,坐标为即
∵
∴
∴
∴
∵,,
∴
∴点坐标为
∵
∴
∴
∴AE=
∴的坐标为,的长为.
(3)
解:由题意知
∵,
∴
∵最小时,有解得
∴
∴.
【点睛】
本题考查了代数式,待定系数法求二次函数解析式,二次函数最值,三角形相似的判定与性质,三角形的外接圆,弧长等知识.解题的关键与难点在于对知识的熟练掌握并能灵活运用.
2、 (1)5,4
(2)见解析
(3)①图象具有对称性,对称轴是直线x=1;②x<-1.6或x>4.3
【解析】
【分析】
(1)把x=-2和x=1分别代入y=|x2-2x-3|,即可求得;
(2)描点、连线画出图象即可;
(3)①根据图象即可求得;
②根据图象即可求得.
【小题1】
解:把x=-2代入y=|x2-2x-3|,得y=5,
∴m=5,
把x=1代入y=|x2-2x-3|,得y=4,
∴n=4,
故答案为:5,4;
【小题2】
如图所示;
【小题3】
①函数的性质:图象具有对称性,对称轴是直线x=1;
故答案为:图象具有对称性,对称轴是直线x=1;
②由图象可知,不等式x+4<|x2-2x-3|的解集为x<-1.6或x>4.3.
【点睛】
本题考查了二次函数图象和性质,二次函数图象上点的坐标特征,一次函数与一次不等式,注意利用数形结合的思想是解此题的关键.
3、 (1)直线x=-1
(2)①-1;②见解析
【解析】
【分析】
(1)直接根据对称轴公式求解;
(2)①将x1和x2代入函数表达式,根据y1=y2得到方程,解之即可;
②将(x1﹣x2)(y1﹣y2)变形为(x1﹣x2)2(x1+x2+2),再根据x1>﹣1,x2>﹣1判断出结果的符号,即可证明.
(1)
解:二次函数y=x2+2x中,
对称轴为直线x==-1;
(2)
①当x1=3n+4,x2=2n﹣1,且y1=y2时,
y1=(3n+4)2+2(3n+4)=9n2+30n+24,
y2=(2n﹣1)2+2(2n﹣1)=4n2-1,
则9n2+30n+24=4n2-1,
解得:n=-5或n=-1;
当时, 不符合题意,舍去,
所以
②(x1﹣x2)(y1﹣y2)
=(x1﹣x2)[(x12+2x1)﹣(x22+2x2)]
=(x1﹣x2)(x12+2x1﹣x22﹣2x2)
=(x1﹣x2)2(x1+x2+2)
∵x1>﹣1,x2>﹣1,
∴x1+x2+2>-1-1+2=0,
又∵A(x1,y1),B(x2,y2)是两个不同的点,
∴x1≠x2,
∴(x1﹣x2)2>0,
∴(x1﹣x2)2(x1+x2+2)>0,
即(x1﹣x2)(y1﹣y2)>0.
【点睛】
本题考查了二次函数的对称轴,解一元二次方程,因式分解的应用,解题的关键是要灵活运用因式分解将式子变形.
4、 (1)
(2)m=
(3)存在,M点的坐标为或或或.
【解析】
【分析】
(1)把,代入中进行求解即可;
(2)如图,连接,求解对称轴为, 由题意可知,,,结合,与,利用即可得到答案;
(3)由(2)得:D点为,再分两种情况讨论,①当BD是平行四边形的一条边时, 如图,当在轴的上方时,由平行四边形的性质与抛物线的性质可得关于抛物线的对称轴对称,重合, 设点, 如图,当在轴的下方时,由平行四边形对角线中点坐标相同得到,, 解方程求解,可得,;②如图,当BD是平行四边形的对角线时, 则,同理可得关于抛物线的对称轴对称,从而可得 从而可得答案.
(1)
(1)把,代入:
,
解得:
∴抛物线表达式为:;
(2)
如图,连接,
∵抛物线解析式为:,且抛物线与y轴交于点C
∴抛物线的对称轴为,
∴OC=4,
∵点D的横坐标为m,
∴,
∵,,
∴AO=1,BO=2,
∴
又∵
∴,
解得:,,
当时,点在对称轴上,不合题意,舍去,所以取,
综上,;
(3)
当时,
D点为,
①当BD是平行四边形的一条边时, 如图,当在轴的上方时,
由平行四边形可得,
关于抛物线的对称轴对称,
重合,
如图,当在轴的下方时,设点, ,
∴,(平行四边形对角线中点坐标相同),
∴,
解得或
∴或,
∴或;
②如图,当BD是平行四边形的对角线时, 则,
∴,关于抛物线的对称轴对称,
,
综上,点的坐标为: 或或或.
【点睛】
主要考查了二次函数的综合,二次函数的性质,平行四边形的性质,掌握以上知识是解题的关键.
5、 (1)w=-3x2+360x-9600;
(2)若每日销售利润达到900元,售价为50元;
(3)当销售价为55元时,可以获得最大利润,为1125元.
【解析】
【分析】
(1)利用该电商平均每天的销售利润w(元)=每袋的销售利润×每天的销售量得出即可;
(2)根据(1)的关系式列出一元二次方程即可;
(3)根据题中所给的自变量的取值得到二次的最值问题即可.
(1)
解:w=(x-40)[105-3(x-45)]
=(x-40)(-3x+240)
=-3x2+360x-9600,
答:该电商平均每天的销售利润w(元)与销售价x(元/袋)之间的函数关系式为w=-3x2+360x-9600;
(2)
解:由题意得,w=-3x2+360x-9600=900,
解得:x1=50,x2=70>55(舍),
答:若每日销售利润达到900元,售价为50元;
(3)
解:w=-3x2+360x-9600=-3(x-60)2+1200,
∵a=-3<0,
∴抛物线开口向下.
又∵对称轴为x=60,
∴当x<60,w随x的增大而增大,
由于50≤x≤55,
∴当x=55时,w的最大值为1125元.
∴当销售价为55元时,可以获得最大利润,为1125元.
【点睛】
本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常用函数的增减性来解答,要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=-时取得.
初中数学冀教版九年级下册第30章 二次函数综合与测试优秀测试题: 这是一份初中数学冀教版九年级下册第30章 二次函数综合与测试优秀测试题,共39页。试卷主要包含了抛物线y=﹣2等内容,欢迎下载使用。
2020-2021学年第30章 二次函数综合与测试课后复习题: 这是一份2020-2021学年第30章 二次函数综合与测试课后复习题,共24页。试卷主要包含了二次函数图像的顶点坐标是,已知点,,都在函数的图象上,则,抛物线y=﹣2,若二次函数y=a等内容,欢迎下载使用。
2021学年第30章 二次函数综合与测试课后复习题: 这是一份2021学年第30章 二次函数综合与测试课后复习题,共30页。试卷主要包含了已知点,,都在函数的图象上,则,抛物线y=﹣2等内容,欢迎下载使用。