开学活动
搜索
    上传资料 赚现金

    2022年精品解析冀教版九年级数学下册第三十章二次函数定向练习试卷(精选含答案)

    2022年精品解析冀教版九年级数学下册第三十章二次函数定向练习试卷(精选含答案)第1页
    2022年精品解析冀教版九年级数学下册第三十章二次函数定向练习试卷(精选含答案)第2页
    2022年精品解析冀教版九年级数学下册第三十章二次函数定向练习试卷(精选含答案)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学冀教版第30章 二次函数综合与测试课后练习题

    展开

    这是一份数学冀教版第30章 二次函数综合与测试课后练习题,共33页。试卷主要包含了二次函数y=ax2﹣4ax+c,已知平面直角坐标系中有点A等内容,欢迎下载使用。
    九年级数学下册第三十章二次函数定向练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知二次函数y=x2﹣2x+m,点A(x1,y1)、点B(x2,y2)(x1<x2)是图象上两点,下列结论正确的是(  )
    A.若x1+x2<2,则y1>y2 B.若x1+x2>2,则y1>y2
    C.若x1+x2<﹣2,则y1<y2 D.若x1+x2>﹣2,则y1>y2
    2、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为(  )

    A.4米 B.10米 C.4米 D.12米
    3、二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示,已知图像经过点(﹣1,0),其对称轴为直线x=1.下列结论:①abc<0;②b2﹣4ac<0;③8a+c<0;④若抛物线经过点(﹣3,n),则关于x的一元二次方程ax2+bx+c﹣n=0(a≠0)的两根分别为﹣3,5.上述结论中正确个数有(  )

    A.1个 B.2个 C.3个 D.4个
    4、下列函数中,随的增大而减小的函数是( )
    A. B. C. D.
    5、已知,是抛物线上的点,且,下列命题正确的是( )
    A.若,则 B.若,则
    C.若,则 D.若,则
    6、二次函数y=ax2﹣4ax+c(a>0)的图象过A(﹣2,y1),B(0,y2),C(3,y3),D(5,y4)四个点,下列说法一定正确的是( )
    A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
    C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
    7、已知平面直角坐标系中有点A(﹣4,﹣4),点B(a,0),二次函数y=x2+(k﹣3)x﹣2k的图象必过一定点C,则AB+BC的最小值是(  )
    A.4 B.2 C.6 D.3
    8、抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
    x

    -3
    -2
    -1
    0
    1

    y

    -6
    0
    4
    6
    6

    给出下列说法:
    ①抛物线与y轴的交点为(0,6);
    ②抛物线的对称轴在y轴的右侧;
    ③抛物线的开口向下;
    ④抛物线与x轴有且只有1个公共点.
    以上说法正确是( )
    A.① B.①② C.①②③ D.①②③④
    9、在抛物线的图象上有三个点,,,则、、的大小关系为( )
    A. B. C. D.
    10、二次函数的自变量与函数值的部分对应值如下表:


    -3
    -2
    -1
    0
    1



    -11
    -3
    1
    1
    -3

    对于下列结论:①二次函数的图像开口向下;②当时,随的增大而减小;③二次函数的最大值是1;④若,是二次函数图像与轴交点的横坐标,则,其中,正确的是( )
    A.①② B.③④ C.①③ D.①②④
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、已知二次函数,当y随x的增大而增大时,自变量x的取值范围是______.
    2、加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率y与加工时间x(单位:min)满足函数表达式y=-0.3x2+1.5x-1,则最佳加工时间为__min.
    3、将抛物线y=x2向左平移3个单位所得图象的函数表达式为___.
    4、已知二次函数的图象经过原点及点(,),且图象与x轴的另一交点到原点的距离为1,则该二次函数解析式为__________________.
    5、将二次函数的图象先向左平移2个单位, 再向下平移5个单位, 则最终所得图象的函数表达式是____________.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,抛物线y=ax2+bx﹣3经过A、B、C三点,点A(﹣3,0)、C(1,0),点B在y轴上.点P是直线AB下方的抛物线上一动点(不与A、B重合).

    (1)求此抛物线的解析式;
    (2)过点P作x轴的垂线,垂足为D,交直线AB于点E,动点P在什么位置时,PE最大,求出此时P点的坐标;
    (3)点Q是抛物线对称轴上一动点,是否存在点Q,使以点A、B、Q为顶点的三角形为直角三角形?若存在,请求出点Q坐标;若不存在,请说明理由.
    2、高邮双黄鸭蛋已入选全世界最值得品尝百种味道,某专卖店根据以往销售数据发现:高邮双黄鸭蛋每天销售数量y(盒)与销售单价x(元/盒)的关系满足一次函数,每盒高邮双黄鸭蛋各项成本合计为40元/盒.
    (1)若该专卖店某天获利800元,求销售单价x(元/盒)的值;
    (2)当销售单价x定为多少元/盒时,该专卖店每天获利最大?最大利润为多少?
    (3)若该专卖店决定每销售一盒就捐出元给当地学校作为贫困学生的助学金,当每天的销售量不低于25盒时,为了确保该店每天扣除捐出后的利润随着销售量的减小而增大,则m的取值范围为______.
    3、已知抛物线y=ax2+bx+5(a为常数,a≠0)交x轴于点A(-1,0)和点B(5,0),交y轴于点C.
    (1)求点C的坐标和抛物线的解析式;
    (2)若点P是抛物线上一点,且PB=PC,求点P的坐标;
    (3)点Q是抛物线的对称轴l上一点,当QA+QC最小时,求点Q的坐标.
    4、如图,在平面直角坐标系中,直线y=x+4与x轴、y轴分别交于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,并与x轴交于另一点C(点C点A的右侧),点P是抛物线上一动点.

    (1)求抛物线的解析式及点C的坐标;
    (2)若点P在第二象限内,过点P作PD⊥x轴于D,交AB于点E.当点P运动到什么位置时,线段PE最长?此时PE等于多少?判断此时△ABP的形状,并证明你的结论.
    (3)在(2)的前提下,有一动点Q在抛物线上运动(线段AB的下方),当Q点运动到什么位置时,△ABQ的面积等于△ABP的面积.
    5、在平面直角坐标系中,抛物线交轴于点,,过点的直线交抛物线于点.
    (1)求该抛物线的函数表达式;
    (2)若点是直线下方抛物线上的一个动点(不与点,重合),求面积的最大值;
    (3)若点在抛物线上,点在直线上.试探究:是否存在点,,使得,同时成立?若存在,请直接写出点的坐标;若不存在,请说明理由.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    由二次函数y=x2﹣2x+m可知对称轴为x=1,当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离小,再结合抛物线开口方向,即可判断.
    【详解】
    解:∵二次函数y=x2﹣2x+m,
    ∴抛物线开口向上,对称轴为x=1,
    ∵x1<x2,
    ∴当x1+x2<2时,点A与点B在对称轴的左边,或点A在左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,
    ∴y1>y2,
    故选:A.
    【点睛】
    本题考查了二次函数的性质,灵活应用x1+x2与2的关系确定点A、点B与对称轴的关系是解决本题的关键.
    2、B
    【解析】
    【分析】
    以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣ x²,再将y=﹣1代入解析式,求出C、D点的横坐标即可求CD的长.
    【详解】
    解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,
    设抛物线的解析式为y=ax2,
    ∵O点到水面AB的距离为4米,
    ∴A、B点的纵坐标为﹣4,
    ∵水面AB宽为20米,
    ∴A(﹣10,﹣4),B(10,﹣4),
    将A代入y=ax2,
    ﹣4=100a,
    ∴a=﹣,
    ∴y=﹣x2,
    ∵水位上升3米就达到警戒水位CD,
    ∴C点的纵坐标为﹣1,
    ∴﹣1=﹣x2,
    ∴x=±5,
    ∴CD=10,
    故选:B.
    【点睛】
    本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.
    3、C
    【解析】
    【分析】
    根据图象可判断abc的符号,可判断结论①,由图象与x轴的交点个数可判断②,由对称轴及x=−2时的函数值即可判断③,由x=−3和对称轴即可判断④.
    【详解】
    解:∵图象开口向下,
    ∴a<0,
    ∵对称轴为直线x=1,
    ∴−=1,
    ∴b=−2a>0,
    ∵图象与y轴的交点在x轴的上方,
    ∴c>0,
    ∴abc<0,
    ∴①说法正确,
    由图象可知抛物线与x轴有两个交点,
    ∴b2−4ac>0,
    ∴②错误,
    由图象可知,当x=−2时,y<0,
    ∴4a−2b+c=4a−2(−2a)+c=8a+c<0,
    ∴③正确,
    由题意可知x=−3是ax2+bx+c−n=0(a≠0)的一个根,
    ∵对称轴是x=1,
    ∴另一个根为x=5,
    ∴④正确,
    ∴正确的有①③④,
    故选:C.
    【点睛】
    本题主要考查二次函数的图象与性质,关键是要牢记图象与各系数之间的关系.
    4、B
    【解析】
    【分析】
    根据一次函数,反比例函数,二次函数,正比例函数的性质逐项分析即可.
    【详解】
    A. ,,随的增大而增大,故A选项不符合题意.
    B. ,, ,的图像位于第三象限,随的增大而减小,故B选项符合题意;
    C. ,,对称轴为轴,在对称轴的左边,随的增大而增大,在对称轴的右边,随的增大而减小,故C选项不符合题意;
    D. ,,随的增大而增大,故D选项不符合题意;
    故选B.
    【点睛】
    本题考查了一次函数,反比例函数,二次函数,正比例函数的性质,掌握以上性质是解题的关键.
    5、C
    【解析】
    【分析】
    先求出抛物线对称轴,再根据两个点距对称轴距离判断即可.
    【详解】
    解:抛物线的对称轴为:直线,
    ∵,
    当,点到对称轴的距离近,即,当,点到对称轴的距离远,即,
    故选:C.
    【点睛】
    本题考查了二次函数的性质,解题关键是求出抛物线的对称轴,根据点距对称轴的远近,进行判断开口.
    6、C
    【解析】
    【分析】
    根据函数表达式得出函数的开口方向和对称轴,从而得到y3<y2<y4<y1,再结合题目一一判断即可.
    【详解】
    解:由函数表达式可知:函数图像开口向上,对称轴为直线x==2,
    ∵-2<0<2<3<5,
    ∴y3<y2<y4<y1,
    若y1y2>0,则y3y4>0或y3y4<0,选项A不符合题意,
    若y1y4>0,则y2y3>0或y2y3<0,选项B不符合题意,
    若y2y4<0,则y1y3<0,选项C符合题意,
    若y3y4<0,则y1y2<0或y1y2>0,选项D不符合题意,
    故选:C.
    【点睛】
    本题考查二次函数的性质,二次函数图象上的点的坐标特征,解题的关键是学会利用图象法解决问题,属于中考常考题型.
    7、C
    【解析】
    【分析】
    将抛物线解析式变形求出点C坐标,再根据两点之间线段最短求出AB+BC的最小值即可.
    【详解】
    解:二次函数y=x2+(k﹣3)x﹣2k=(x-2)(x-1+k)-2
    ∴函数图象一定经过点C(2,-2)
    点C关于x轴对称的点的坐标为(2,2),连接,如图,



    故选:C
    【点睛】
    本题主要考查了二次函数的性质,两点之间线段最短以及勾股定理等知识,明确“两点之间线段最短”是解答本题的关键.
    8、C
    【解析】
    【分析】
    根据表中数据和抛物线的对称性,可得抛物线的对称轴是直线x=,可得到抛物线的开口向下,再根据抛物线的性质即可进行判断.
    【详解】
    解:根据图表,抛物线与y轴交于(0,6),故①正确;
    ∵抛物线经过点(0,6)和(1,6),
    ∴对称轴为x==>0,即抛物线的对称轴在y轴的右侧,故②正确;
    当x

    相关试卷

    冀教版九年级下册第30章 二次函数综合与测试综合训练题:

    这是一份冀教版九年级下册第30章 二次函数综合与测试综合训练题,共31页。试卷主要包含了下列函数中,随的增大而减小的是等内容,欢迎下载使用。

    冀教版九年级下册第30章 二次函数综合与测试一课一练:

    这是一份冀教版九年级下册第30章 二次函数综合与测试一课一练,共28页。试卷主要包含了若二次函数y=a等内容,欢迎下载使用。

    2021学年第30章 二次函数综合与测试达标测试:

    这是一份2021学年第30章 二次函数综合与测试达标测试,共31页。试卷主要包含了若二次函数y=a等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map